Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Magnetization Dynamics In Coupled Thin Film Systems, Daniel J. Adams May 2019

Magnetization Dynamics In Coupled Thin Film Systems, Daniel J. Adams

University of New Orleans Theses and Dissertations

A study is presented detailing experimental investigations of magnetization dynamics in nanostructured systems which are coupled magnetically. This work seeks to characterize the anisotropy of such systems through experimental techniques which probe microwave resonant absorption in the materials.

A custom-built experimental setup, designed and assembled in our labs, is explained in detail. This setup allows for angular-dependent ferromagnetic resonance (FMR) measurements in the sample plane through vector network analyzer spectroscopy and is adaptable to two different types of coplanar waveguides. This technique has proven effective for characterization of multiple types of magnetic systems, including multilayered structures as detailed here, with …


Ferromagnetic Resonance Studies Of Coupled Magnetic Systems, Daniel J. Adams May 2016

Ferromagnetic Resonance Studies Of Coupled Magnetic Systems, Daniel J. Adams

University of New Orleans Theses and Dissertations

The high-frequency properties of coupled magnetic systems have been investigated using vector network analyzer ferromagnetic resonance (VNA-FMR) spectroscopy. SAF structures consist of two ferromagnetic layers separated by a non-magnetic spacer, coupled through the indirect exchange interaction. The ferromagnetic layers of our samples were composed of FeCoB separated by a layer of Ru. The thickness of Ru was varied in the range of 8 to 18 Å among the samples studied. Antiferromagnetic coupling can be quickly identified by the major hysteresis loop (MHL).

A new way of displaying FMR data for these trilayer samples is presented which completely preserves the anisotropy …


Electric Field Tunable Magnetic Properties Of Lead-Free Na0.5bi0.5tio3/Cofe2o4 Multiferroic Composites, S Narendra Babu, Seong Gi Min, Leszek Malkinski Jan 2011

Electric Field Tunable Magnetic Properties Of Lead-Free Na0.5bi0.5tio3/Cofe2o4 Multiferroic Composites, S Narendra Babu, Seong Gi Min, Leszek Malkinski

Physics Faculty Publications

Lead-free multiferroic particulate composites of Na0.5Bi0.5TiO3 (NBT) and CoFe2O4 (CFO) have been synthesized by solid-state sintering method. A systematic study of structural, magnetic and magnetoelectric (ME) properties is undertaken. Structural and morphology studies carried out by x-ray diffraction and field emission scanning electron microscopy indicate formation of single phase for parent phases and presence of both phases in the composites. Magnetic properties are investigated using vibrating sample magnetometer and ferromagnetic resonance (FMR) measurements at room temperature. Strong ME coupling is demonstrated in NBT-CFO 70-30 mol% composite by an electrostatically tunable FMR field …


Morphology, Magnetic And Dynamic Properties Of Artificial Structures Assembled By Acoustic Vibrations, K B. Paul, L Malkinski Jan 2009

Morphology, Magnetic And Dynamic Properties Of Artificial Structures Assembled By Acoustic Vibrations, K B. Paul, L Malkinski

Physics Faculty Publications

Cobalt micromagnetic particles with an average size of ≈ 1.6 μm and varying total mass of the powder were assembled on patterned media with perpendicular magnetization by acoustic vibrations onto designed shapes reflecting the primary material. The replicas were studied with scanning electron microscopy, vibrating sample magnetometry, and ferromagnetic resonance spectroscopy. Their properties were significantly influenced by the shape anisotropy induced through the parent molds. A tendency in the development of the physical characteristics of the replicas was observed as their geometrical parameters changed.


High-Frequency Characterization Of Permalloy Nanosized Strips Using Network Analyzer Ferromagnetic Resonance, Bijoy K. Kuanr, Radek Lopusnik, Leszek M. Malkinski, Matt Wenger, Minghui Yu, Donald Scherer Ii, Z Celinski, R E. Camley Jan 2008

High-Frequency Characterization Of Permalloy Nanosized Strips Using Network Analyzer Ferromagnetic Resonance, Bijoy K. Kuanr, Radek Lopusnik, Leszek M. Malkinski, Matt Wenger, Minghui Yu, Donald Scherer Ii, Z Celinski, R E. Camley

Physics Faculty Publications

We report on the dynamic properties of Permalloy nanostrips at gagahertz frequencies. The thickness of the strips is 100 nm, strip width is 300 nm, strip spacing is 1 μm, and length is 0.3–100 μm; aspect ratios are 1:1, 1:2, 1:3, 1:5, 1:10, and 1:333. The dynamic behavior was studied by network analyzer ferromagnetic resonance (FMR) using Permalloy strips on a coplanar waveguide in flip-chip geometry. The FMR mode frequencies (fr) can be controlled by the aspect ratio as well as by the applied magnetic field (H). In longer strips (1:10 and 1:333), …


Microwave Absorption Of Patterned Arrays Of Nanosized Magnetic Stripes With Different Aspect Ratios, Leszek M. Malkinski, Minghui Yu, Andriy Y. Voyk, Donald J. Scherer Ii, Leonard Spinu, Weillie Zhou, Scott Whittenburg, Zachary Davis, Jin-Seung Jung Jan 2007

Microwave Absorption Of Patterned Arrays Of Nanosized Magnetic Stripes With Different Aspect Ratios, Leszek M. Malkinski, Minghui Yu, Andriy Y. Voyk, Donald J. Scherer Ii, Leonard Spinu, Weillie Zhou, Scott Whittenburg, Zachary Davis, Jin-Seung Jung

Physics Faculty Publications

Arrays consisting of nanosized stripes of Permalloy with different length-to-width ratios have been fabricated using electron beam nanolithography, magnetron sputtering, and lift-off process. These stripes have a thickness of 100 nm, a width of 300 nm, and different lengths ranging from 300 nm to 100 μm. The stripes are separated by a distance of 1 μm. Magnetization hysteresis loops were measured using a superconducting quantum interference device susceptometer. Microwave absorption at 9.8 GHz was determined by means of ferromagnetic resonance technique. The dependence of the resonant field on the angle between the nanostructure and the in-plane dc magnetic …