Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 38

Full-Text Articles in Physical Sciences and Mathematics

The High Pressure Dependence Of X-Ray Induced Decomposition Of Cadmium Oxalate, Adrian F. Lua Sanchez, Petrika Cifligu, Marc Graff, Michael Pravica, Pradip K. Bhowmik, Changyong Park, Egor Evlyukhin Oct 2023

The High Pressure Dependence Of X-Ray Induced Decomposition Of Cadmium Oxalate, Adrian F. Lua Sanchez, Petrika Cifligu, Marc Graff, Michael Pravica, Pradip K. Bhowmik, Changyong Park, Egor Evlyukhin

Physics & Astronomy Faculty Research

The high proclivity of x rays to destabilize and distort molecular structures has been previously utilized in the synthesis of novel compounds. Here, we show that x-ray induced decomposition of cadmium oxalate induces chemical and structural transformations only at 0.5 and 1 GPa. Using x-ray diffraction and Raman spectroscopy, the synthesized product is identified as cadmium carbonate with cadmium oxalate remnants, which is stable under ambient conditions. At ambient and >1 GPa pressures, only degradation of the electronic density distribution is observed. The transformation kinetics are examined in terms of Avrami’s model, which demonstrates that despite the necessity of high …


Computation And Data Driven Discovery Of Topological Phononic Materials, Jiangxu Li, Jiaxi Liu, Stanley A. Baronett, Mingfeng Liu, Lei Wang, Ronghan Li, Yun Chen, Dianzhong Li, Qiang Zhu, Xing Qiu Chen Feb 2021

Computation And Data Driven Discovery Of Topological Phononic Materials, Jiangxu Li, Jiaxi Liu, Stanley A. Baronett, Mingfeng Liu, Lei Wang, Ronghan Li, Yun Chen, Dianzhong Li, Qiang Zhu, Xing Qiu Chen

Physics & Astronomy Faculty Research

© 2021, The Author(s). The discovery of topological quantum states marks a new chapter in both condensed matter physics and materials sciences. By analogy to spin electronic system, topological concepts have been extended into phonons, boosting the birth of topological phononics (TPs). Here, we present a high-throughput screening and data-driven approach to compute and evaluate TPs among over 10,000 real materials. We have discovered 5014 TP materials and grouped them into two main classes of Weyl and nodal-line (ring) TPs. We have clarified the physical mechanism for the occurrence of single Weyl, high degenerate Weyl, individual nodal-line (ring), nodal-link, nodal-chain, …


Response Of The Mode Grüneisen Parameters With Anisotropic Compression: A Pressure And Temperature Dependent Raman Study Of Β-Sn, Jasmine K. Hinton, Christian Childs, Dean Smith, Paul B. Ellison, Keith V. Lawler, Ashkan Salamat Nov 2020

Response Of The Mode Grüneisen Parameters With Anisotropic Compression: A Pressure And Temperature Dependent Raman Study Of Β-Sn, Jasmine K. Hinton, Christian Childs, Dean Smith, Paul B. Ellison, Keith V. Lawler, Ashkan Salamat

Physics & Astronomy Faculty Research

The lattice dynamic response of body-centered tetragonal β−Sn (I41/amd) under high pressure and -temperature conditions is determined using experimental optical vibration modes. Raman scattering is used to map the phase stability region of β−Sn to perform mode Grüneisen analysis, and we demonstrate the necessity of an optical intensity calibration for Raman thermometry. The Grüneisen tensor is evaluated along a set of isotherms to address shortcomings of single-mode Grüneisen parameters with respect to anisotropic deformations of this tetragonal structured soft metal. The changes observed here in the Grüneisen tensor as a function of temperature are related to anharmonicity and denote potential …


Xenon Iron Oxides Predicted As Potential Xe Hosts In Earth’S Lower Mantle, Feng Peng, Xianqi Song, Chang Liu, Quan Li, Maosheng Miao, Changfeng Chen, Yanming Ma Oct 2020

Xenon Iron Oxides Predicted As Potential Xe Hosts In Earth’S Lower Mantle, Feng Peng, Xianqi Song, Chang Liu, Quan Li, Maosheng Miao, Changfeng Chen, Yanming Ma

Physics & Astronomy Faculty Research

An enduring geological mystery concerns the missing xenon problem, referring to the abnormally low concentration of xenon compared to other noble gases in Earth’s atmosphere. Identifying mantle minerals that can capture and stabilize xenon has been a great challenge in materials physics and xenon chemistry. Here, using an advanced crystal structure search algorithm in conjunction with first-principles calculations we find reactions of xenon with recently discovered iron peroxide FeO2, forming robust xenon-iron oxides Xe2FeO2 and XeFe3O6 with significant Xe-O bonding in a wide range of pressure-temperature conditions corresponding to vast regions in Earth’s lower mantle. Calculated mass density and sound …


Toughening A Superstrong Carbon Crystal: Sequential Bond-Breaking Mechanisms, Hui Liang, Hefei Li, Quan Li, Changfeng Chen Oct 2020

Toughening A Superstrong Carbon Crystal: Sequential Bond-Breaking Mechanisms, Hui Liang, Hefei Li, Quan Li, Changfeng Chen

Physics & Astronomy Faculty Research

A complex orthorhombic carbon allotrope in Pbam symmetry with 32 atoms in its unit cell, thus termed Pbam-32 carbon, was recently predicted [C. Y. He et al., Phys. Rev. Lett. 121, 175701 (2018)]. Its crystal structure comprises alternating fivefold, sixfold, and sevenfold carbon rings and exhibits reduced bonding anisotropy compared to diamond, raising the prospects of finding a superstrong material with distinct and favorable mechanical properties. Here we report findings from first-principles calculations that reveal peculiar stress-strain relations in Pbam-32 carbon. The obtained stress responses under various tensile and shear strains display outstanding characteristics contrasting those of traditional superhard materials …


Pressure-Stabilized Divalent Ozonide Cao3 And Its Impact On Earth’S Oxygen Cycles, Yanchao Wang, Meiling Xu, Liuxiang Yang, Bingmin Yan, Qin Qin, Xuecheng Shao, Yunwei Zhang, Dajian Huang, Xiaohuan Lin, Jian Lv, Dongzhou Zhang, Huiyang Gou, Ho-Kwang Mao, Changfeng Chen, Yanming Ma Sep 2020

Pressure-Stabilized Divalent Ozonide Cao3 And Its Impact On Earth’S Oxygen Cycles, Yanchao Wang, Meiling Xu, Liuxiang Yang, Bingmin Yan, Qin Qin, Xuecheng Shao, Yunwei Zhang, Dajian Huang, Xiaohuan Lin, Jian Lv, Dongzhou Zhang, Huiyang Gou, Ho-Kwang Mao, Changfeng Chen, Yanming Ma

Physics & Astronomy Faculty Research

High pressure can drastically alter chemical bonding and produce exotic compounds that defy conventional wisdom. Especially significant are compounds pertaining to oxygen cycles inside Earth, which hold key to understanding major geological events that impact the environment essential to life on Earth. Here we report the discovery of pressure-stabilized divalent ozonide CaO3 crystal that exhibits intriguing bonding and oxidation states with profound geological implications. Our computational study identifies a crystalline phase of CaO3 by reaction of CaO and O2 at high pressure and high temperature conditions; ensuing experiments synthesize this rare compound under compression in a diamond anvil cell with …


On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young Apr 2020

On-Chip Terahertz Modulation And Emission With Integrated Graphene Junctions, Joshua O. Island, Peter Kissin, Jacob Schalch, Xiaomeng Cui, Sheikh Rubaiat Ui Haque, Alex Potts, Takashi Taniguchi, Kanji Watanabe, Richard D. Averitt, Andrea F. Young

Physics & Astronomy Faculty Research

The efficient modulation and control of ultrafast signals on-chip is of central importance in terahertz (THz) communications and a promis- ing route toward sub-diffraction limit THz spectroscopy. Two-dimensional (2D) materials may provide a platform for these endeavors. We explore this potential, integrating high-quality graphene p–n junctions within two types of planar transmission line circuits to modulate and emit picosecond pulses. In a coplanar strip line geometry, we demonstrate the electrical modulation of THz signal transmission by 95%. In a Goubau waveguide geometry, we achieve complete gate-tunable control over THz emission from a photoexcited graphene junction. These studies inform the development …


Vibration Overtone Hyperpolarizability Measured For H2, Rachel M. Ellis, David P. Shelton Apr 2020

Vibration Overtone Hyperpolarizability Measured For H2, Rachel M. Ellis, David P. Shelton

Physics & Astronomy Faculty Research

The second hyperpolarizability (γ) of the H2 molecule was measured by gas-phase electric field induced second harmonic generation at the frequencies of the one-photon resonance for the 3–0 Q(J) overtone transitions (v, J = 0, J → 3, J for J = 0, 1, 2, and 3). The magnitude of the resonant contribution to γ was measured with 2% accuracy using the previously determined non-resonant γ for calibration. Pressure broadening and frequency shift for the transitions were also measured. A theoretical expression for the resonant vibrational γ contribution in terms of transition polarizabilities is compared to the observations. The measured …


Superconductivity In Compression-Shear Deformed Diamond, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen Apr 2020

Superconductivity In Compression-Shear Deformed Diamond, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen

Physics & Astronomy Faculty Research

Diamond is a prototypical ultrawide band gap semiconductor, but turns into a superconductor with a critical temperature Tc≈4 K near 3% boron doping [E. A. Ekimov et al., Nature (London) 428, 542 (2004)]. Here we unveil a surprising new route to superconductivity in undoped diamond by compression-shear deformation that induces increasing metallization and lattice softening with rising strain, producing phonon mediated Tc up to 2.4–12.4 K for a wide range of Coulomb pseudopotential μ∗=0.15–0.05. This finding raises intriguing prospects of generating robust superconductivity in strained diamond crystal, showcasing a distinct and hitherto little explored approach to driving materials into superconducting …


The Breakup Of A Helium Cluster After Removing Attractive Interaction Among A Significant Number Of Atoms In The Cluster, Tao Pang Apr 2020

The Breakup Of A Helium Cluster After Removing Attractive Interaction Among A Significant Number Of Atoms In The Cluster, Tao Pang

Physics & Astronomy Faculty Research

The breakup of a quantum liquid droplet is examined through a 4He cluster by removing the attractive tail in the interaction between some of the atoms in the system with the diffusion quantum Monte Carlo simulation. The ground-state energy, kinetic energy, cluster size, and density profile of the cluster are evaluated against the percentage of the atoms without the attractive tail. The condition for the cluster to lose its ability to form a quantum liquid droplet at zero temperature is found and analyzed. The cluster is no longer able to form a quantum liquid droplet when about two-thirds of pairs …


High Dielectric Ternary Oxides From Crystal Structure Prediction And High-Throughput Screening, Jingyu Qu, David Zagaceta, Weiwei Zhang, Qiang Zhu Mar 2020

High Dielectric Ternary Oxides From Crystal Structure Prediction And High-Throughput Screening, Jingyu Qu, David Zagaceta, Weiwei Zhang, Qiang Zhu

Physics & Astronomy Faculty Research

The development of new high dielectric materials is essential for advancement in modern electronics. Oxides are generally regarded as the most promising class of high dielectric materials for industrial applications as they possess both high dielectric constants and large band gaps. Most previous researches on high dielectrics were limited to already known materials. In this study, we conducted an extensive search for high dielectrics over a set of ternary oxides by combining crystal structure prediction and density functional perturbation theory calculations. From this search, we adopted multiple stage screening to identify 441 new low-energy high dielectric materials. Among these materials, …


Buckling Of Blue Phosphorus Nanotubes Under Axial Compression: Insights From Molecular Dynamics Simulations, Shiping Jiang, Huiling Wu, Liangzhi Kou, Chun Tang, Chengyuan Wang, Changfeng Chen Jan 2020

Buckling Of Blue Phosphorus Nanotubes Under Axial Compression: Insights From Molecular Dynamics Simulations, Shiping Jiang, Huiling Wu, Liangzhi Kou, Chun Tang, Chengyuan Wang, Changfeng Chen

Physics & Astronomy Faculty Research

We report on mechanical properties of blue phosphorus nanotubes (BluePNTs) from systematic molecular dynamics simulations, adopting a Stillinger-Weber potential with parameters determined by fitting to energetic and structural data from first-principles calculations. Our results corroborate the previously reported bending poison effect and size-dependent buckling behaviors. Under axial compression, current simulations predict a shell-to-column buckling mode transition for BluePNTs with increasing aspect ratios; further compression of BluePNTs with large aspect ratios results in a column-to-shell buckling mode transition. Associated critical buckling strains can be described by the continuum mechanics theory. We also simulated buckling behavior of black phosphorus nanotubes (BlackPNTs) and …


First-Principles Study Of High-Pressure Phase Stability And Superconductivity Of Bi4i4, Shiyu Deng, Xianqi Song, Quan Li, Yu Xie, Changfeng Chen, Yanming Ma Dec 2019

First-Principles Study Of High-Pressure Phase Stability And Superconductivity Of Bi4i4, Shiyu Deng, Xianqi Song, Quan Li, Yu Xie, Changfeng Chen, Yanming Ma

Physics & Astronomy Faculty Research

Bismuth iodide Bi4I4 exhibits intricate crystal structures and topological insulating states that are highly susceptible to influence by environments, making its physical properties highly tunable by external conditions. In this work, we study the evolution of structural and electronic properties of Bi4I4 at high pressure using an advanced structure search method in conjunction with first-principles calculations. Our results indicate that the most stable ambient-pressure monoclinic α−Bi4I4 phase in C2/m symmetry transforms to a trigonal P31c structure (ɛ−Bi4I4) at 8.4 GPa, then to a tetragonal P4/mmm structure (ζ−Bi4I4) above 16.6 GPa. In contrast to the semiconducting nature of ambient-pressure Bi4I4, the …


Smooth Flow In Diamond: Atomistic Ductility And Electronic Conductivity, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen Nov 2019

Smooth Flow In Diamond: Atomistic Ductility And Electronic Conductivity, Chang Liu, Xianqi Song, Quan Li, Yanming Ma, Changfeng Chen

Physics & Astronomy Faculty Research

Diamond is the quintessential superhard material widely known for its stiff and brittle nature and large electronic band gap. In stark contrast to these established benchmarks, our first-principles studies unveil surprising intrinsic structural ductility and electronic conductivity in diamond under coexisting large shear and compressive strains. These complex loading conditions impede brittle fracture modes and promote atomistic ductility, triggering rare smooth plastic flow in the normally rigid diamond crystal. This extraordinary structural change induces a concomitant band gap closure, enabling smooth charge flow in deformation created conducting channels. These startling soft-and-conducting modes reveal unprecedented fundamental characteristics of diamond, with profound …


Gamma-Ray Bursts Induced By Turbulent Reconnection, A. Lazarian, Bing Zhang, Siyao Xu Sep 2019

Gamma-Ray Bursts Induced By Turbulent Reconnection, A. Lazarian, Bing Zhang, Siyao Xu

Physics & Astronomy Faculty Research

We revisit the Internal-Collision-induced MAgnetic Reconnection and Turbulence model of gamma-ray bursts (GRBs) in view of the advances made in understanding of both relativistic magnetic turbulence and relativistic turbulent magnetic reconnection. We identify the kink instability as the most natural way of changing the magnetic configuration to release the magnetic free energy through magnetic reconnection, as well as driving turbulence that enables fast turbulent reconnection. We show that this double role of the kink instability is important for explaining the prompt emission of GRBs. Our study confirms the critical role that turbulence plays in boosting reconnection efficiency in GRBs and …


Probing The Direct Factor For Superconductivity In Fese-Based Superconductors By Raman Scattering, Animin Zhang, Xiaoli Ma, Yimeng Wang, Shanshan Sun, Bin Lei, Hechang Lei, Xianhui Chen, Xiaoqun Wang, Changfeng Chen, Qingming Zhang Aug 2019

Probing The Direct Factor For Superconductivity In Fese-Based Superconductors By Raman Scattering, Animin Zhang, Xiaoli Ma, Yimeng Wang, Shanshan Sun, Bin Lei, Hechang Lei, Xianhui Chen, Xiaoqun Wang, Changfeng Chen, Qingming Zhang

Physics & Astronomy Faculty Research

The FeSe-based superconductors exhibit a wide range of critical temperature Tcunder a variety of material and physical conditions, but extensive studies to date have yet to produce a consensus view on the underlying mechanism. Here we report on a systematic Raman-scattering work on intercalated FeSe superconductors Lix(NH3)yFe2Se2 and (Li,Fe)OHFeSe compared to pristine FeSe. All three crystals show an anomalous power-law temperature dependence of phonon linewidths, deviating from the standard anharmonic behavior. This intriguing phenomenon is attributed to electron-phonon coupling effects enhanced by electron correlation, as evidenced by the evolution of the A1g Raman mode. Meanwhile, an analysis of the B1g …


The Delay Time Of Gravitational Wave — Gamma-Ray Burst Associations, Bing Zhang Jul 2019

The Delay Time Of Gravitational Wave — Gamma-Ray Burst Associations, Bing Zhang

Physics & Astronomy Faculty Research

The first gravitational wave (GW) — gamma-ray burst (GRB) association, GW170817/GRB 170817A, had an offset in time, with the GRB trigger time delayed by ∼1.7 s with respect to the merger time of the GW signal. We generally discuss the astrophysical origin of the delay time, Δt, of GW-GRB associations within the context of compact binary coalescence (CBC) — short GRB (sGRB) associations and GW burst — long GRB (lGRB) associations. In general, the delay time should include three terms, the time to launch a clean (relativistic) jet, Δtjet; the time for the jet to break out from the surrounding …


A Comprehensive Assessment Of The Low-Temperature Thermal Properties And Thermodynamic Functions Of Ceo2, Tyler D. Morrison, Elizabeth Sooby Wood, Phillippe F. Weck, Eunja Kim, Sung Oh Woo, Andrew T. Nelson, Donald G. Naugle Jul 2019

A Comprehensive Assessment Of The Low-Temperature Thermal Properties And Thermodynamic Functions Of Ceo2, Tyler D. Morrison, Elizabeth Sooby Wood, Phillippe F. Weck, Eunja Kim, Sung Oh Woo, Andrew T. Nelson, Donald G. Naugle

Physics & Astronomy Faculty Research

Reported is an experimental and computational investigation of the low temperature heat capacity, thermodynamic functions, and thermal conductivity of stoichiometric, polycrystalline CeO2. The experimentally measured heat capacity at T... (See full abstract in article).


Topological Nodal Line Semimetals In Graphene Network Structures, Jian-Tao Wang, Hongming Weng, Chengfeng Chen Jul 2019

Topological Nodal Line Semimetals In Graphene Network Structures, Jian-Tao Wang, Hongming Weng, Chengfeng Chen

Physics & Astronomy Faculty Research

Topological semimetals are a fascinating class of quantum materials that possess extraordinary electronic and transport properties. These materials have attracted great interests in recent years for their fundamental significance and potential device applications. There have been intensive studies suggested that three-dimensional graphene networks support topological semimetals with two types of continuous nodal lines: one is to form closed nodal rings in Brillouin zone and the other ones traversing the whole Brillouin zone to be periodically connected. Carbon has negligible spin-orbit coupling, non-magnetism and great diversity of allotropes, which makes it very promising in realizing topological nodal line semimetals. Here we …


How Bright Are Fast Optical Bursts Associated With Fast Radio Bursts?, Yuan-Pei Yang, Bing Zhang, Jian-Yan Wei Jun 2019

How Bright Are Fast Optical Bursts Associated With Fast Radio Bursts?, Yuan-Pei Yang, Bing Zhang, Jian-Yan Wei

Physics & Astronomy Faculty Research

The origin of fast radio bursts (FRBs) is still unknown. Multiwavelength observations during or shortly after the FRB phase would be essential to identify the counterpart of an FRB and to constrain its progenitor and environment. In this work, we investigate the brightness of the “fast optical bursts” (FOBs) associated with FRBs and the prospects of detecting them. We investigate several inverse Compton (IC) scattering processes that might produce an FOB, including both the one-zone and two-zone models. We also investigate the extension of the same mechanism of FRB emission to the optical band. We find that a detectable FOB …


Superconductivity In The Van Der Waals Layered Compound Ps2, Yan-Ling Li, Elissaios Stavrou, Qiang Zhu, Samantha M. Clarke, Yunguo Li, Hong-Mei Huang Jun 2019

Superconductivity In The Van Der Waals Layered Compound Ps2, Yan-Ling Li, Elissaios Stavrou, Qiang Zhu, Samantha M. Clarke, Yunguo Li, Hong-Mei Huang

Physics & Astronomy Faculty Research

van der Waals (vdW) layered compounds provided a fruitful research platform for the realization of superconductivity. However, a vdW layered superconductor with a high transition temperature (Tc) at ambient conditions is still rare. Here, using variable-composition evolutionary structure predictions, we systematically explored the stable compounds in the P-S system up to 20 GPa. Opposed to the complex stoichiometries at ambient conditions, only one compound, PS2, is predicted to be thermodynamically stable above 8 GPa. Strikingly, PS2 is a vdW layered material isostructural to 3R−MoS2 exhibiting a predicted Tc of around 11 K at ambient pressure, both in the bulk and …


Magnetic Borophenes From An Evolutionary Search, Meng-Hong Zhu, Xiao-Ji Weng, Guoying Gao, Shuai Dong, Ling-Fang Lin, Wei-Hua Wang, Qiang Zhu, Artem R. Oganov, Xiao Dong, Yongjun Tian, Xiang-Feng Zhou, Hui-Tian Wang May 2019

Magnetic Borophenes From An Evolutionary Search, Meng-Hong Zhu, Xiao-Ji Weng, Guoying Gao, Shuai Dong, Ling-Fang Lin, Wei-Hua Wang, Qiang Zhu, Artem R. Oganov, Xiao Dong, Yongjun Tian, Xiang-Feng Zhou, Hui-Tian Wang

Physics & Astronomy Faculty Research

A computational methodology based on ab initio evolutionary algorithms and spin-polarized density functional theory was developed to predict two-dimensional magnetic materials. Its application to a model system borophene reveals an unexpected rich magnetism and polymorphism. A metastable borophene with nonzero thickness is an antiferromagnetic semiconductor from first-principles calculations, and can be further tuned into a half-metal by finite electron doping. In this borophene, the buckling and coupling among three atomic layers are not only responsible for magnetism, but also result in an out-of-plane negative Poisson's ratio under uniaxial tension, making it the first elemental material possessing auxetic and magnetic properties …


Kondo Signatures Of A Quantum Magnetic Impurity In Topological Superconductors, Rui Wang, Wei-Yi Su, Jian-Xin Zhu, Chin-Sen Ting, Hai Li, Changfeng Chen, Baigeng Wang, Xiaoqun Wang Mar 2019

Kondo Signatures Of A Quantum Magnetic Impurity In Topological Superconductors, Rui Wang, Wei-Yi Su, Jian-Xin Zhu, Chin-Sen Ting, Hai Li, Changfeng Chen, Baigeng Wang, Xiaoqun Wang

Physics & Astronomy Faculty Research

We study the Kondo physics of a quantum magnetic impurity in two-dimensional topological superconductors (TSCs), either intrinsic or induced on the surface of a bulk topological insulator, using a numerical renormalization group technique. We show that, despite sharing the p+ip pairing symmetry, intrinsic and extrinsic TSCs host different physical processes that produce distinct Kondo signatures. Extrinsic TSCs harbor an unusual screening mechanism involving both electron and orbital degrees of freedom that produces rich and prominent Kondo phenomena, especially an intriguing pseudospin Kondo singlet state in the superconducting gap and a spatially anisotropic spin correlation. In sharp contrast, intrinsic TSCs support …


Fluorine Chemistry At Extreme Conditions: Possible Synthesis Of Hgf4, Michael G. Pravica, Sarah Schyck, Blake Harris, Petrika Cifligu, Eunja Kim, Brant Billinghurst Feb 2019

Fluorine Chemistry At Extreme Conditions: Possible Synthesis Of Hgf4, Michael G. Pravica, Sarah Schyck, Blake Harris, Petrika Cifligu, Eunja Kim, Brant Billinghurst

Physics & Astronomy Faculty Research

By irradiating a pressurized mixture of a fluorine-bearing compound (XeF2XeF2) and HgF2HgF2 with synchrotron hard x-rays ... (See full text for complete abstract)


Ternary Inorganic Electrides With Mixed Bonding, Junjie Wang, Qiang Zhu, Zhenhai Wang, Hideo Hosono Feb 2019

Ternary Inorganic Electrides With Mixed Bonding, Junjie Wang, Qiang Zhu, Zhenhai Wang, Hideo Hosono

Physics & Astronomy Faculty Research

A high-throughput screening based on first-principles calculations was performed to search for new ternary inorganic electrides. From the available materials database, we identified three new thermodynamically stable materials (Li12Mg3Si4, NaBa2O, and Ca5Ga2N4) as potential electrides made by main group elements, in addition to the well known mayenite based electride (C12A7:e−). Different from those conventional inorganic electrides in which the excess electrons play only the role of anions, the three new materials, resembling the electrides found in simple metals under high pressure, possess mixed ionic and metallic bonding. The interplay between two competing mechanisms, together with the different crystal packing motifs, …


A Loud Quasi-Periodic Oscillation After A Atar Is Disrupted By A Massive Black Hole, Dheeraj R. Pasham, Ronald A. Remillard, P. Chris Fragile, Alessia Franchini, Nicholas C. Stone, Giuseppe Lodato, Jeroen Homan, Deepto Chakrabarty, Frederick K. Baganoff, James F. Steiner, Eric R. Coughlin, Nishanth R. Pasham Feb 2019

A Loud Quasi-Periodic Oscillation After A Atar Is Disrupted By A Massive Black Hole, Dheeraj R. Pasham, Ronald A. Remillard, P. Chris Fragile, Alessia Franchini, Nicholas C. Stone, Giuseppe Lodato, Jeroen Homan, Deepto Chakrabarty, Frederick K. Baganoff, James F. Steiner, Eric R. Coughlin, Nishanth R. Pasham

Physics & Astronomy Faculty Research

The tidal forces close to massive black holes can rip apart stars that come too close to them. As the resulting stellar debris spirals toward the black hole, the debris heats up and emits x-rays. We report observations of a stable 131-second x-ray quasi-periodic oscillation from the tidal disruption event ASASSN-14li. Assuming the black hole mass indicated by host galaxy scaling relations, these observations imply that the periodicity originates from close to the event horizon and that the black hole is rapidly spinning. Our findings demonstrate that tidal disruption events can generate quasi-periodic oscillations that encode information about the physical …


Cob6 Monolayer: A Robust Two-Dimensional Ferromagnet, Xiao Tang, Weiguo Sun, Yuantong Gu, Cheng Lu, Liangzhi Kou, Changfeng Chen Jan 2019

Cob6 Monolayer: A Robust Two-Dimensional Ferromagnet, Xiao Tang, Weiguo Sun, Yuantong Gu, Cheng Lu, Liangzhi Kou, Changfeng Chen

Physics & Astronomy Faculty Research

Two-dimensional (2D) magnetic materials are essential to developing high-performance spintronic devices. Recent experimental discoveries of several atomic thin 2D ferromagnetic materials have stimulated great interest in further exploring this fascinating class of materials. Here, combining an advanced crystal structure search method and extensive first-principles energetic and dynamic calculations, we have identified a planar CoB6 monolayer as a stable 2D ferromagnet. We show that the ferromagnetic ground state of the CoB6 monolayer remains robust in the ambient environment, and the magnetic stability and moment can be remarkably enhanced and tuned by external strain. Moreover, we propose feasible synthesis routes for the …


First-Principles Investigation Of Sc-Iii/Iv Under High Pressure, Sheng-Cai Zhu, Xiao-Zhi Yan, Scott Fredericks, Yan-Ling Li, Qiang Zhu Dec 2018

First-Principles Investigation Of Sc-Iii/Iv Under High Pressure, Sheng-Cai Zhu, Xiao-Zhi Yan, Scott Fredericks, Yan-Ling Li, Qiang Zhu

Physics & Astronomy Faculty Research

Using an ab initio evolutionary structure prediction method in conjunction with density functional theory, we performed a systematic investigation of the structural transition of elemental scandium under pressure up to 250 GPa. Our prediction successfully reproduced several allotropes which have been reported in the literature, including the Sc-I, Sc-II, and Sc-V. Moreover, we observed a series of energetically degenerate and geometrically similar structures at 110–195 GPa, which can partly explain the experimental observations regarding the unsolved phases III and IV reported by Y. Akahama et al. [Phys. Rev. Lett. 94, 195503 (2005)]. A detailed comparison of the powder x-ray diffraction …


Rare Helium-Bearing Compound Feo2he Stabilized At Deep-Earth Conditions, Jurong Zhang, Jian Lv, Hefei Li, Xiaolei Feng, Cheng Lu, Simon A. T. Redferm, Hanyu Liu, Changfeng Chen, Yanming Ma Dec 2018

Rare Helium-Bearing Compound Feo2he Stabilized At Deep-Earth Conditions, Jurong Zhang, Jian Lv, Hefei Li, Xiaolei Feng, Cheng Lu, Simon A. T. Redferm, Hanyu Liu, Changfeng Chen, Yanming Ma

Physics & Astronomy Faculty Research

There is compelling geochemical evidence for primordial helium trapped in Earth’s lower mantle, but the origin and nature of the helium source remain elusive due to scarce knowledge on viable helium-bearing compounds that are extremely rare. Here we explore materials physics underlying this prominent challenge. Our structure searches in conjunction with first-principles energetic and thermodynamic calculations uncover a remarkable helium-bearing compound FeO2He at high pressure-temperature conditions relevant to the core-mantle boundary. Calculated sound velocities consistent with seismic data validate FeO2He as a feasible constituent in ultralow velocity zones at the lowermost mantle. These mutually corroborating findings establish the first and …


Boron Oxides Under Pressure: Prediction Of The Hardest Oxides, Huafeng Dong, Artem R. Oganov, Vadim V. Brazhkin, Qinggao Wang, Jin Zhang, M. Mahdi Davari Esfahani, Xiang-Feng Zhou, Fugen Wu, Qiang Zhu Nov 2018

Boron Oxides Under Pressure: Prediction Of The Hardest Oxides, Huafeng Dong, Artem R. Oganov, Vadim V. Brazhkin, Qinggao Wang, Jin Zhang, M. Mahdi Davari Esfahani, Xiang-Feng Zhou, Fugen Wu, Qiang Zhu

Physics & Astronomy Faculty Research

We search for stable compounds of boron and oxygen at pressures from 0 to 500 GPa using the ab initio evolutionary algorithm uspex. Only two stable stoichiometries of boron oxides, namely, B6O and B2O3, are found to be stable, in good agreement with experiment. A hitherto unknown phase of B6O at ambient pressure, Cmcm−B6O, has recently been predicted by us and observed experimentally. For B2O3, we predict three previously unknown stable high-pressure phases—two of these (Cmc21 and P212121) are dynamically and mechanically stable at ambient pressure, and should be quenchable to ambient conditions. Their predicted hardnesses, reaching 33–35 GPa, make …