Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 22 of 22

Full-Text Articles in Physical Sciences and Mathematics

Near Conformal Perturbation Theory In Syk Type Models, Sumit R. Das, Animik Ghosh, Antal Jevicki, Kenta Suzuki Dec 2020

Near Conformal Perturbation Theory In Syk Type Models, Sumit R. Das, Animik Ghosh, Antal Jevicki, Kenta Suzuki

Physics and Astronomy Faculty Publications

We present a systematic procedure to extract the dynamics of the low energy soft mode in SYK type models with a single energy scale J and emergent reparametrization symmetry in the IR. This is given in the framework of the perturbative scheme of arXiv:1608.07567 based on a specific (off-shell) breaking of conformal invariance in the UV, adjusted to yield the exact large-N saddle point. While this breaking term formally vanishes on-shell, it has a non-trivial effect on correlation functions and the effective action. In particular, it leads to the Schwarzian action with a specific coupling to bi-local matter. The …


Cft Unitarity And The Ads Cutkosky Rules, David Meltzer, Allic Sivaramakrishnan Nov 2020

Cft Unitarity And The Ads Cutkosky Rules, David Meltzer, Allic Sivaramakrishnan

Physics and Astronomy Faculty Publications

We derive the Cutkosky rules for conformal field theories (CFTs) at weak and strong coupling. These rules give a simple, diagrammatic method to compute the double-commutator that appears in the Lorentzian inversion formula. We first revisit weakly-coupled CFTs in flat space, where the cuts are performed on Feynman diagrams. We then generalize these rules to strongly-coupled holographic CFTs, where the cuts are performed on the Witten diagrams of the dual theory. In both cases, Cutkosky rules factorize loop diagrams into on-shell sub-diagrams and generalize the standard S-matrix cutting rules. These rules are naturally formulated and derived in Lorentzian momentum space, …


Effective Number Theory: Counting The Identities Of A Quantum State, Ivan Horváth, Robert Mendris Nov 2020

Effective Number Theory: Counting The Identities Of A Quantum State, Ivan Horváth, Robert Mendris

Anesthesiology Faculty Publications

Quantum physics frequently involves a need to count the states, subspaces, measurement outcomes, and other elements of quantum dynamics. However, with quantum mechanics assigning probabilities to such objects, it is often desirable to work with the notion of a “total” that takes into account their varied relevance. For example, such an effective count of position states available to a lattice electron could characterize its localization properties. Similarly, the effective total of outcomes in the measurement step of a quantum computation relates to the efficiency of the quantum algorithm. Despite a broad need for effective counting, a well-founded prescription has not …


Atmospheric Measurements With Unmanned Aerial Systems (Uas), Marcelo I. Guzman Nov 2020

Atmospheric Measurements With Unmanned Aerial Systems (Uas), Marcelo I. Guzman

Chemistry Faculty Publications

This Special Issue provides the first literature collection focused on the development and implementation of unmanned aircraft systems (UAS) and their integration with sensors for atmospheric measurements on Earth. The research covered in the Special Issue combines chemical, physical, and meteorological measurements performed in field campaigns as well as conceptual and laboratory work. Useful examples for the development of platforms and autonomous systems for environmental studies are provided, which demonstrate how careful the operation of sensors aboard UAS must be to gather information for remote sensing in the atmosphere. The work serves as a key collection of articles to introduce …


A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings Aug 2020

A Hybrid Achromatic Metalens, Fatih Balli, Mansoor A. Sultan, Sarah K. Lami, J. Todd Hastings

Electrical and Computer Engineering Faculty Publications

Metalenses, ultra-thin optical elements that focus light using subwavelength structures, have been the subject of a number of recent investigations. Compared to their refractive counterparts, metalenses offer reduced size and weight, and new functionality such as polarization control. However, metalenses that correct chromatic aberration also suffer from markedly reduced focusing efficiency. Here we introduce a Hybrid Achromatic Metalens (HAML) that overcomes this trade-off and offers improved focusing efficiency over a broad wavelength range from 1000-1800 nm. HAMLs can be designed by combining recursive ray-tracing and simulated phase libraries rather than computationally intensive global search algorithms. Moreover, HAMLs can be fabricated …


High-Temperature Optical Properties Of Indium Tin Oxide Thin-Films, Jiwoong Kim, Sujan Shrestha, Maryam Souri, John G. Connell, Sungkyun Park, Ambrose Seo Jul 2020

High-Temperature Optical Properties Of Indium Tin Oxide Thin-Films, Jiwoong Kim, Sujan Shrestha, Maryam Souri, John G. Connell, Sungkyun Park, Ambrose Seo

Physics and Astronomy Faculty Publications

Indium tin oxide (ITO) is one of the most widely used transparent conductors in optoelectronic device applications. We investigated the optical properties of ITO thin films at high temperatures up to 800 °C using spectroscopic ellipsometry. As temperature increases, amorphous ITO thin films undergo a phase transition at ~ 200 °C and develop polycrystalline phases with increased optical gap energies. The optical gap energies of both polycrystalline and epitaxial ITO thin films decrease with increasing temperature due to electron-phonon interactions. Depending on the background oxygen partial pressure, however, we observed that the optical gap energies exhibit reversible changes, implying that …


Effect Of Thomas Rotation On The Lorentz Transformation Of Electromagnetic Fields, Lakshya Malhotra, Robert Golub, Eva Kraegeloh, Nima Nouri, Bradley R. Plaster Mar 2020

Effect Of Thomas Rotation On The Lorentz Transformation Of Electromagnetic Fields, Lakshya Malhotra, Robert Golub, Eva Kraegeloh, Nima Nouri, Bradley R. Plaster

Physics and Astronomy Faculty Publications

A relativistic particle undergoing successive boosts which are non collinear will experience a rotation of its coordinate axes with respect to the boosted frame. This rotation of coordinate axes is caused by a relativistic phenomenon called Thomas Rotation. We assess the importance of Thomas rotation in the calculation of physical quantities like electromagnetic fields in the relativistic regime. We calculate the electromagnetic field tensor for general three dimensional successive boosts in the particle's rest frame as well as the laboratory frame. We then compare the electromagnetic field tensors obtained by a direct boost [Formula: see text] and successive boosts [Formula: …


Resource Efficient Design Of Quantum Circuits For Cryptanalysis And Scientific Computing Applications, Edgard Munoz-Coreas Jan 2020

Resource Efficient Design Of Quantum Circuits For Cryptanalysis And Scientific Computing Applications, Edgard Munoz-Coreas

Theses and Dissertations--Electrical and Computer Engineering

Quantum computers offer the potential to extend our abilities to tackle computational problems in fields such as number theory, encryption, search and scientific computation. Up to a superpolynomial speedup has been reported for quantum algorithms in these areas. Motivated by the promise of faster computations, the development of quantum machines has caught the attention of both academics and industry researchers. Quantum machines are now at sizes where implementations of quantum algorithms or their components are now becoming possible. In order to implement quantum algorithms on quantum machines, resource efficient circuits and functional blocks must be designed. In this work, we …


Quantum Phases And Phase Transitions In Designer Spin Models, Nisheeta Desai Jan 2020

Quantum Phases And Phase Transitions In Designer Spin Models, Nisheeta Desai

Theses and Dissertations--Physics and Astronomy

This work focuses on numerical studies of quantum spin systems. These simple models are known to exhibit a variety of phases, some of which have no classical counterpart. Phase transitions between them are driven by quantum fluctuations and the unconventional nature of some such transitions make them a fascinating avenue of study.

Quantum Monte Carlo (QMC) is an indispensable tool in the study of these phases and phase transitions in two and higher dimensions. Nevertheless, we are limited by our inability to simulate models that suffer from the infamous sign problem. While the case of S=1/2 has been studied …


Large N Fields And Holography, Animik Ghosh Jan 2020

Large N Fields And Holography, Animik Ghosh

Theses and Dissertations--Physics and Astronomy

We study (nearly) AdS/CFT holography within the context of the Sachdev-Ye- Kitaev (SYK) model. We present a systematic procedure to extract the dynamics of the low energy Schwarzian mode in SYK type models with a single energy scale J and emergent reparametrization symmetry in the infrared within the framework of perturbation theory. We develop a systematic approach using Feynman diagrams in bilocal theory to obtain a formal expression for the enhanced and O(1) corrections to the bilocal propagator and apply this general technique to large q SYK. We show that the Schwarzian theory describes a sector of a general class …


The Pion Form Factor And Momentum And Angular Momentum Fractions Of The Proton In Lattice Qcd, Gen Wang Jan 2020

The Pion Form Factor And Momentum And Angular Momentum Fractions Of The Proton In Lattice Qcd, Gen Wang

Theses and Dissertations--Physics and Astronomy

Lattice Quantum Chromodynamics (QCD) provides a way to have a precise calculation and a new way of understanding the hadrons from first principles. From this perspective, this dissertation focuses first on a precise calculation of the pion form factor using overlap fermions on six ensembles of 2+1-flavor domain-wall configurations generated by the RBC/UKQCD collaboration with pion masses varying from 137 to 339 MeV. Taking advantage of the fast Fourier transform, low-mode substitution (LMS) and the multi-mass algorithm to access many combinations of source and sink momenta, we have done a simulation with various valence quark masses and with a range …


Study Of Cell Charging Effects For The Neutron Electric Dipole Moment Experiment At Oak Ridge National Laboratory, Mark Broering Jan 2020

Study Of Cell Charging Effects For The Neutron Electric Dipole Moment Experiment At Oak Ridge National Laboratory, Mark Broering

Theses and Dissertations--Physics and Astronomy

The neutron electric dipole moment (nEDM) collaboration at the Spallation Neutron Source plans to use ultra-cold neutrons in superfluid helium to improve the nEDM limit by about two orders of magnitude. In this apparatus, neutrons are stored in poly(methyl methacrylate), PMMA, cells located in a strong, stable electric field. This electric field is produced by high voltage electrodes located outside of the neutron cells. Several sources generate charged particles inside the neutron cells. The electric field pulls these charges farther apart, attracting each to the oppositely charged electrode. As the charges build up on the cells walls, they create an …


Electrical And Magnetic Transport Properties Of Periodic And Aperiodic Artificial Spin Ice Systems, Justin Woods Jan 2020

Electrical And Magnetic Transport Properties Of Periodic And Aperiodic Artificial Spin Ice Systems, Justin Woods

Theses and Dissertations--Physics and Astronomy

In recent years, the topic of magnetic frustration in systems and the effect that frustration can have on system dynamics has been a rich environment for study. One such system that lends itself directly to this study are systems of single domain ferromagnetic bars in two dimensions. These ferromagnetic bars can be fabricated from a thin film using current lithography techniques. The bars are fabricated in such a way that their shape anisotropy dictates the magnetization of the bar will be a single domain, Ising-like magnetic moment. These single domain magnetic bars scan be arranged to introduce frustration of their …


Effects Of Aperiodicity And Frustration On The Magnetic Properties Of Artificial Quasicrystals, Barry Farmer Jan 2020

Effects Of Aperiodicity And Frustration On The Magnetic Properties Of Artificial Quasicrystals, Barry Farmer

Theses and Dissertations--Physics and Astronomy

Quasicrystals have been shown to exhibit physical properties that are dramatically different from their periodic counterparts. A limited number of magnetic quasicrystals have been fabricated and measured, and they do not exhibit long-range magnetic order, which is in direct conflict with simulations that indicate such a state should be accessible. This dissertation adopts a metamaterials approach in which artificial quasicrystals are fabricated and studied with the specific goal of identifying how aperiodicity affects magnetic long-range order. Electron beam lithography techniques were used to pattern magnetic thin films into two types of aperiodic tilings, the Penrose P2, and Ammann-Beenker tilings. SQUID …


Sensitivity Of Electron-Proton Coincidence Asymmetries In Neutron Beta-Decay To Scalar And Tensor Interactions, Subash C. Nepal Jan 2020

Sensitivity Of Electron-Proton Coincidence Asymmetries In Neutron Beta-Decay To Scalar And Tensor Interactions, Subash C. Nepal

Theses and Dissertations--Physics and Astronomy

We study the combined sensitivity of measurements of electron-proton coincidence asymmetries in polarized neutron beta-decay together with a measurement of the electron energy spectrum in unpolarized neutron beta-decay to beyond Standard Model (BSM) scalar and tensor interactions, via the appearance of such BSM physics in the Fierz interference terms b and bv. Whereas measurements of the electron energy spectrum directly probe b, both the proton and neutrino asymmetries for which experimental results exist are not sensitive to bv, but effectively to b - bv. This results in reduced sensitivity to BSM scalar and …


Analysis Of Magnetization Directions Of Lunar Swirls, Lillie Cole Jan 2020

Analysis Of Magnetization Directions Of Lunar Swirls, Lillie Cole

Lewis Honors College Capstone Collection

Lunar Swirls are high albedo markings on the Moon that exist in the regions of some crustal magnetic anomalies. The precise mechanism responsible for the swirl features is unknown but a prevailing theory is solar wind standoff, where the magnetic field from subsurface magnetized sources protects the lunar surface from solar wind ions, leading to their lesser maturation and brighter appearance. If this theory is correct, the magnetic field of the anomalies should heavily influence the appearance of the swirl. To better understand the cause of swirls, the magnetization direction of the source creating the field is analyzed. This study …


A Csi Detector Array For The Ndtgamma Test Measurement, Diana V. Sahibnazarova Jan 2020

A Csi Detector Array For The Ndtgamma Test Measurement, Diana V. Sahibnazarova

Oswald Research and Creativity Competition

No abstract provided.


Development Of A Robust Treatment Delivery Framework For Stereotactic Body Radiotherapy (Sbrt) Of Synchronous Multiple Lung Lesions, Lana Catherine Critchfield Jan 2020

Development Of A Robust Treatment Delivery Framework For Stereotactic Body Radiotherapy (Sbrt) Of Synchronous Multiple Lung Lesions, Lana Catherine Critchfield

Theses and Dissertations--Radiation Medicine

Stereotactic body radiation therapy (SBRT) of lung tumors uses high doses of radiation to deliver high biological effective doses (BED) in very few fractions (1-5). With the use of highly conformal fields to cover the tumor without depositing large doses to non-cancerous structures, this technique has proven time and again to be successful at achieving high local control. However, frequently patients receiving SBRT are elderly with multiple medical comorbidities who may not tolerate long treatment times. Furthermore, many patients present with oligometastatic or multiple primary lung tumors. The success of SBRT on oligometastatic lung disease relies on physician experience with …


Transverse And Longitudinal Thermal Diffusivity Measurements Of Polymer And Small Molecule Organic Semiconductors With Different Techniques, Maryam Shahi Jan 2020

Transverse And Longitudinal Thermal Diffusivity Measurements Of Polymer And Small Molecule Organic Semiconductors With Different Techniques, Maryam Shahi

Theses and Dissertations--Physics and Astronomy

The main thrust of this research was to develop new probes to measure thermal conductivities (κ) of small-molecule crystals, as well as polymer blends of organic semiconductors, both to screen these for possible applications, e.g. as thermoelectric power generators, and to gain an understanding of thermal transport in them. Emphasis has been on the crystals of “TIPS pentacene” [TIPS = 6,13 bis(triisopropylsilylethynyl), and free-standing films of PEDOT:PSS [poly(3,4-ethylenedioxythiophene) polystyrene sulfonate] for different electrochemical and thermoelectric applications. Separate techniques were used for in-plane and transverse thermal conductivities in which 𝜅𝜅 is determined indirectly from measurements of the thermal diffusivity (D ≡ …


Graphene In A Uniform Magnetic Field, Ankur Das Jan 2020

Graphene In A Uniform Magnetic Field, Ankur Das

Theses and Dissertations--Physics and Astronomy

We study monolayer graphene in a uniform magnetic field in the absence and presence of interactions. In the non-interacting limit, for p/q flux quanta per unit cell (p, q are coprime integer), the central two bands have 2q Dirac points in the Brillouin zone (BZ) in the nearest-neighbor model. These touchings and their locations are guaranteed by chiral symmetry and the lattice symmetries of the honeycomb structure. If we add a staggered potential and a next-nearest-neighbor hopping we find that their competition leads to a topological phase transition. We also study the stability of the Dirac touchings to one-body perturbations …


Theoretical Studies Of C And Cp Violation In $\Eta \To \Pi^+ \Pi^- \Pi^0$ Decay, Jun Shi Jan 2020

Theoretical Studies Of C And Cp Violation In $\Eta \To \Pi^+ \Pi^- \Pi^0$ Decay, Jun Shi

Theses and Dissertations--Physics and Astronomy

A violation of mirror symmetry in the $\eta\to\pi^+\pi^-\pi^0$ Dalitz plot has long been recognized as a signal of C and CP violation. In this thesis, we show how the isospin of the underlying C- and CP-violating structures can be reconstructed from their kinematic representation in the Dalitz plot. Our analysis of the most recent experimental data reveals, for the first time, that the C- and CP-violating amplitude with total isospin I = 2 is much more severely suppressed than that with total isospin I = 0.

In searching for C- and CP-violating sources beyond the SM, we enumerate the leading-dimension, …


A Theoretical And Experimental Study Of Charge Transport In Organic Thermoelectric Materials And Charge Transfer States In Organic Photovoltaics, Ashkan Abtahi Jan 2020

A Theoretical And Experimental Study Of Charge Transport In Organic Thermoelectric Materials And Charge Transfer States In Organic Photovoltaics, Ashkan Abtahi

Theses and Dissertations--Physics and Astronomy

Applications of organic electronics have increased significantly over the past two decades. Organic semiconductors (OSC) can be used in mechanically flexible devices with potentially lower cost of fabrication than their inorganic counterparts, yet in many cases organic semiconductor-based devices suffer from lower performance and stability. Investigating the doping mechanism, charge transport, and charge transfer in such materials will allow us to address the parameters that limit performance and potentially resolve them. In this dissertation, organic materials are used in three different device structures to investigate charge transport and charge transfer. Chemically doped π-conjugated polymers are promising materials to be used …