Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

Old Dominion University

2024

Hadrons

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Beam Spin Asymmetry Measurements Of Deeply Virtual Π⁰ Production With Clas12, The Clas Collaboration, A. Kim, S. Diehl, K. Joo, V. Kubarovsky, P. Achenbach, Z. Akbar, J. S. Alvarado, Whitney R. Armstrong, H. Atac, H. Avakian, C. Ayerbe Gayoso, L. Barion, M. Battaglieri, I. Bedlinskiy, B. Benkel, A. Bianconi, A. S. Biselli, M. Bondi, M. Zureck, Et Al. Jan 2024

Beam Spin Asymmetry Measurements Of Deeply Virtual Π⁰ Production With Clas12, The Clas Collaboration, A. Kim, S. Diehl, K. Joo, V. Kubarovsky, P. Achenbach, Z. Akbar, J. S. Alvarado, Whitney R. Armstrong, H. Atac, H. Avakian, C. Ayerbe Gayoso, L. Barion, M. Battaglieri, I. Bedlinskiy, B. Benkel, A. Bianconi, A. S. Biselli, M. Bondi, M. Zureck, Et Al.

Physics Faculty Publications

The new experimental measurements of beam spin asymmetry were performed for the deeply virtual exclusive π0 production in a wide kinematic region with the photon virtualities Q2 up to 6.6 GeV2and the Bjorken scaling variable 𝓍B in the valence regime. The data were collected by the CEBAF Large Acceptance Spectrometer (CLAS12) at Jefferson Lab with longitudinally polarized 10.6 GeV electrons scattered on an unpolarized liquid-hydrogen target. Sizable asymmetry values indicate a substantial contribution from transverse virtual photon amplitudes to the polarized structure functions. The interpretation of these measurements in terms of the Generalized Parton Distributions …


Tmd Phenomenology With The Hso Approach, Tommaso Rainaldi, M. Boglione, J. O. Gonzalez-Hernandez, Ted C. Rogers Jan 2024

Tmd Phenomenology With The Hso Approach, Tommaso Rainaldi, M. Boglione, J. O. Gonzalez-Hernandez, Ted C. Rogers

Physics Faculty Publications

Transverse momentum dependent (TMD) observables are typically classified in terms of their contributions coming from different regions in transverse momentum. The low transverse momentum behavior is often ascribed to intrinsic nonperturbative properties of the hadron described by TMD factorization, while the large transverse momentum region can be computed using fixed order collinear perturbation theory. Combining both pictures in a consistent way presents challenges, for practical calculations as well as the interpretation of results. We discuss a recent approach that is designed to retain a physical interpretation in terms of hadron structure while alleviating tension with techniques used at much higher …


Analytic Solutions Of The Dglap Evolution And Theoretical Uncertainties, A. Simonelli Jan 2024

Analytic Solutions Of The Dglap Evolution And Theoretical Uncertainties, A. Simonelli

Physics Faculty Publications

The energy dependence for the singlet sector of Parton Distributions Functions (PDFs) is described by an entangled pair of ordinary linear differential equations. Although there are no exact analytic solutions, it is possible to provide approximated results depending on the assumptions and the methodology adopted. These results differ in their sub-leading, neglected terms and ultimately they are associated with different treatments of the theoretical uncertainties. In this work, a novel analytic approach in Mellin space is presented and a new methodology for obtaining closed and exponentiated analytic solutions is devised. Different results for the DGLAP evolution at Next-Leading-Order are compared, …


Counting Linearly Polarized Gluons With Lattice Qcd, Shuai Zhao Jan 2024

Counting Linearly Polarized Gluons With Lattice Qcd, Shuai Zhao

Physics Faculty Publications

We outline an approach to calculate the transverse-momentum-dependent distribution of linearly polarized gluons inside an unpolarized hadron on the lattice with the help of large momentum effective theory. To achieve this purpose, we propose calculating a Euclidean version of the degree of polarization for a fast-moving hadron on the lattice, which is ultraviolet finite, and no soft function subtraction is needed. It indicates a practical way to explore the distribution of the linearly polarized gluons in a proton and the linearly polarized gluon effects in hadron collisions on the lattice.