Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

Atom Scattering From Metals, William Hayes Dec 2009

Atom Scattering From Metals, William Hayes

All Dissertations

In the initial portion of this dissertation studies of Ar
scattering from Ru(0001) at thermal and hyperthermal energies are
compared to calculations with classical scattering theory. These
data exhibited a number of characteristics that are unusual in
comparison to other systems for which atomic beam experiments have
been carried out under similar conditions. The measured energy
losses were unusually small. Some of the angular distributions
exhibited an anomalous shoulder feature in addition to a broad
peak near the specular direction and quantum mechanical
diffraction was observed under conditions for which it was not
expected. Many of the unusual features observed …


Light Beaming From A Single Subwavelength Metal Slit, Pengyu Chen Dec 2009

Light Beaming From A Single Subwavelength Metal Slit, Pengyu Chen

All Theses

In this thesis, light transmission through a single sub-wavelength slit in a silver thin film with periodic gratings at the exit side of the slit has been studied in both the visible and mid-infrared wavelength ranges.
In the visible wavelength range, we first investigate the enhancement of plasmonic light beaming efficiency by near field resonance in a subwavelength metallic slit-groove beaming structure. We show that by varying the film thickness and the separation distance of the beaming grating, the intensity of the near field can be greatly enhanced by resonance, which leads to the increase of the beaming efficiency. Moreover, …


Improved Thermoelectric Performance Of P-Type Polycrystalline Bi2te3 Via Hydrothermal Treatment With Alkali Metal Salts, Zhe Su Aug 2009

Improved Thermoelectric Performance Of P-Type Polycrystalline Bi2te3 Via Hydrothermal Treatment With Alkali Metal Salts, Zhe Su

All Dissertations

The field of thermoelectric research has attracted a lot of interest in hope of helping address the energy crisis. In recent years, low-dimensional thermoelectric materials have been found promising and thus become a popular school of thought. However, the high complexity and cost for fabricating low-dimensional materials give rise to the attempt to further improve conventional bulk polycrystalline materials. Polycrystals are featured by numerous grain boundaries that can scatter heat-carrying phonons to significantly reduce the thermal conductivity κ whereas at the same time can unfortunately deteriorate the electrical resistivity ρ. Aiming at the dualism of the grain boundaries in determining …


Effect Of Cosb3 Nanoparticles On The Thermoelectric Properties Of Filled And Unfilled Cosb3 Skutterudites, Paola Alboni Aug 2009

Effect Of Cosb3 Nanoparticles On The Thermoelectric Properties Of Filled And Unfilled Cosb3 Skutterudites, Paola Alboni

All Dissertations

This study explores the possibility of somewhat decoupling the electrical and thermal conduction, thereby being able to limit the thermal conduction while minimizing the effect on the electrical conduction. The approach is using a nanoparticle layer with a slight compositional mismatch as compared to the bulk skutterudite. A hydrothermal nanoparticle-plating technique has been employed to grow a layer of CoSb3 nanoparticles on the surface of skutterudite bulk matrix grains. Skutterudites of various forms were fabricated and studied in order to assess the effect of this nano-plated layer as a viable method in the improvement of thermoelectric properties of CoSb …


The Dynamics Of Energy And Charge Transfer In Low And Hyperthermal Energy Ion-Solid Interactions, Matthew Ray Aug 2009

The Dynamics Of Energy And Charge Transfer In Low And Hyperthermal Energy Ion-Solid Interactions, Matthew Ray

All Dissertations

The energy and charge transfer dynamics for low and hyperthermal energy (10 eV to 2 keV) alkali and noble gas ions impacting noble metals as a function of incident energy, species and scattering geometry has been studied. The experiments were performed in an ultra-high vacuum scattering chamber attached to a low and hyperthermal energy beamline.
The energy transfer was measured for K+ scattered from a Ag(001) surface along the [110] crystalline direction at a fixed laboratory angle of 90°. It was found that as the incident energy is reduced from 100 to 10 eV, the normalized scattered energy increased. Previous …


Structural Role Of Pseudouridines In The Peptidyl Transferase Center Of Human 28s Ribosomal Rna, Chris Mart Aug 2009

Structural Role Of Pseudouridines In The Peptidyl Transferase Center Of Human 28s Ribosomal Rna, Chris Mart

All Theses

The human ribosome is an RNA-protein complex responsible for protein synthesis in the cell. Crystal structures of bacterial ribosomes solved to date depict no protein sidechains within the catalytic core, or peptidyl transferase center (PTC). This region of the human ribosome comprises approximately 230 highly conserved nucleotides. Notably, several of the uridine bases clustered within the human PTC are post-transcriptionally modified to pseudouridines, as compared with bacterial analogues. Pseudouridines are base-rotated uridines, linked to their sugar moieties through C5-C1' linkages, affording additional hydrogen-bond donor groups at the N1 position of their rings. A connection was recently made between the absence …


Modeling Effects Of Human Single Nucleotide Polymorphisms On Protein-Protein Interactions, Shaolei Teng, Thomas Madej, Anna Panchenko, Emil Alexov Mar 2009

Modeling Effects Of Human Single Nucleotide Polymorphisms On Protein-Protein Interactions, Shaolei Teng, Thomas Madej, Anna Panchenko, Emil Alexov

Publications

A large set of three-dimensional structures of 264 protein-protein complexes with known nonsynonymous single nucleotide polymorphisms (nsSNPs) at the interface was built using homology-based methods. The nsSNPs were mapped on the proteins' structures and their effect on the binding energy was investigated with CHARMM force field and continuum electrostatic calculations. Two sets of nsSNPs were studied: disease annotated Online Mendelian Inheritance in Man (OMIM) and nonannotated (non-OMIM). It was demonstrated that OMIM nsSNPs tend to destabilize the electrostatic component of the binding energy, in contrast with the effect of non-OMIM nsSNPs. In addition, it was shown that the change of …