Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Imaging Normal Fluid Flow In He Ii With Neutrons And Lasers — A New Application Of Neutron Beams For Studies Of Turbulence, Xin Wen Dec 2022

Imaging Normal Fluid Flow In He Ii With Neutrons And Lasers — A New Application Of Neutron Beams For Studies Of Turbulence, Xin Wen

Doctoral Dissertations

Turbulence is ubiquitous in life —from biology to astrophysics. The best direct numeric simulations (DNS) have only been benchmarked against low resolution, time-averaged experimental configurations—partly because of limitations in computing power. With time, computing power has greatly increased, so there is need for higher quality data of turbulent flow. In this dissertation, we explore a solution that enables quantitative visualization measurement of the velocity field in liquid helium, which has the potential of breaking new ground for high Reynolds number turbulence research and model testing.

Our technique involves creation of clouds of molecular tracers using 3He-neutron absorption reaction in liquid …


Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib Jan 2019

Applications Of Machine Learning In Nuclear Imaging And Radiation Detection, Shaikat Mahmood Galib

Doctoral Dissertations

"The main focus of this work is to use machine learning and data mining techniques to address some challenging problems that arise from nuclear data. Specifically, two problem areas are discussed: nuclear imaging and radiation detection. The techniques to approach these problems are primarily based on a variant of Artificial Neural Network (ANN) called Convolutional Neural Network (CNN), which is one of the most popular forms of 'deep learning' technique.

The first problem is about interpreting and analyzing 3D medical radiation images automatically. A method is developed to identify and quantify deformable image registration (DIR) errors from lung CT scans …


Problems In Graph-Structured Modeling And Learning, James Atwood Jul 2017

Problems In Graph-Structured Modeling And Learning, James Atwood

Doctoral Dissertations

This thesis investigates three problems in graph-structured modeling and learning. We first present a method for efficiently generating large instances from nonlinear preferential attachment models of network structure. This is followed by a description of diffusion-convolutional neural networks, a new model for graph-structured data which is able to outperform probabilistic relational models and kernel-on-graph methods at node classification tasks. We conclude with an optimal privacy-protection method for users of online services that remains effective when users have poor knowledge of an adversary's behavior.