Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

PDF

University of Nebraska - Lincoln

Xiaoshan Xu Papers

2009

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Optical Properties And Magnetochromism In Multiferroic Bifeo3, X. S. Xu, T. V. Brinzari, S. Lee, Y. H. Chu, L. W. Martin, A. Kumar, S. Mcgill, R. C. Rai, R. Ramesh, V. Gopalan, S. W. Cheong, J. L. Musfeldt Jan 2009

Optical Properties And Magnetochromism In Multiferroic Bifeo3, X. S. Xu, T. V. Brinzari, S. Lee, Y. H. Chu, L. W. Martin, A. Kumar, S. Mcgill, R. C. Rai, R. Ramesh, V. Gopalan, S. W. Cheong, J. L. Musfeldt

Xiaoshan Xu Papers

In order to investigate spin-charge coupling in multiferroic oxides, we measured the optical properties of BiFeO3. Although the direct 300 K charge gap is observed at 2.67 eV, absorption onset actually occurs at much lower energy with Fe3+ excitations at 1.41 and 1.90 eV. Temperature and magnetic-field-induced spectral changes reveal complex interactions between on-site crystal-field and magnetic excitations in the form of magnon sidebands. We employ the sensitivity of these magnon sidebands to map out the magnetic-fieldtemperature phase diagram which demonstrates optical evidence for spin spiral quenching above 20 T and suggests a spin domain reorientation near …


Absence Of Spin Liquid Behavior In Nd3ga5sio14 Using Magneto-Optical Spectroscopy, X. S. Xu, T. V. Brinzari, S. Mcgill, H. D. Zhou, C. R. Wiebe, J. L. Musfeldt Jan 2009

Absence Of Spin Liquid Behavior In Nd3ga5sio14 Using Magneto-Optical Spectroscopy, X. S. Xu, T. V. Brinzari, S. Mcgill, H. D. Zhou, C. R. Wiebe, J. L. Musfeldt

Xiaoshan Xu Papers

We measured the low-lying crystal field levels of Nd3+ in Nd3Ga5SiO14 via magneto-optical spectroscopy and employed the extracted energies, magnetic moments, and symmetries to analyze the magnetic properties and test the spin liquid candidacy of this material. The exchange interaction is surprisingly small, a discovery that places severe constraints on models used to describe the ground state of this system. Further, it demonstrates the value of local-probe photophysical techniques for rare-earthcontaining materials where bulk property measurements can be skewed by low-lying electronic structure.


Magnon Sidebands And Spin-Charge Coupling In Bismuth Ferrite Probed By Nonlinear Optical Spectroscopy, M. O. Ramirez, A. Kumar, S. A. Denev, N. J. Podraza, X. S. Xu, R. C. Rai, Y. H. Chu, J. Seidel, L. W. Martin, S. -Y. Yang, E. Saiz, J. F. Ihlefeld, S. Lee, J. Klug, S. W. Cheong, M. J. Bedzyk, O. Auciello, D. G. Schlom, R. Ramesh, J. Orenstein, J. L. Musfeldt, V. Gopalan Jan 2009

Magnon Sidebands And Spin-Charge Coupling In Bismuth Ferrite Probed By Nonlinear Optical Spectroscopy, M. O. Ramirez, A. Kumar, S. A. Denev, N. J. Podraza, X. S. Xu, R. C. Rai, Y. H. Chu, J. Seidel, L. W. Martin, S. -Y. Yang, E. Saiz, J. F. Ihlefeld, S. Lee, J. Klug, S. W. Cheong, M. J. Bedzyk, O. Auciello, D. G. Schlom, R. Ramesh, J. Orenstein, J. L. Musfeldt, V. Gopalan

Xiaoshan Xu Papers

The interplay between spin waves (magnons) and electronic structure in materials leads to the creation of additional bands associated with electronic energy levels which are called magnon sidebands. The large difference in the energy scales between magnons (meV) and electronic levels (eV) makes this direct interaction weak and hence makes magnon sidebands difficult to probe. Linear light absorption and scattering techniques at low temperatures are traditionally used to probe these sidebands. Here we show that optical secondharmonic generation, as the lowest-order nonlinear process, can successfully probe the magnon sidebands at room temperature and up to 723 K in bismuth ferrite, …