Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physics

PDF

Claremont Colleges

1995

Optical properties

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

A High-Bandwidth Frequency-Domain Photon Migration Instrument For Clinical Use, Steen J. Madsen, Eric R. Anderson, Richard C. Haskell, Bruce J. Tromberg May 1995

A High-Bandwidth Frequency-Domain Photon Migration Instrument For Clinical Use, Steen J. Madsen, Eric R. Anderson, Richard C. Haskell, Bruce J. Tromberg

All HMC Faculty Publications and Research

We have developed a high-bandwidth frequency-domain photon migration (FDPM) instrument which is capable of noninvasively determining the optical properties of biological tissues in near-real-time. This portable, inexpensive, diode-based instrument is unique in the sense that we employ direct diode laser modulation and avalanche photodiode detection. Diffusion models were used to extract the optical properties (absorption and transport scattering coefficients)of tissue-simulating solutions.from the 300 kHz to I GHz photon density wave data.


Phase Velocity Limit Of High-Frequency Photon Density Waves, Richard C. Haskell, Lars O. Svaasand, Steen J. Madsen, Fabio E. Rojas, Ti-Chen C. Feng, Bruce J. Tromberg Feb 1995

Phase Velocity Limit Of High-Frequency Photon Density Waves, Richard C. Haskell, Lars O. Svaasand, Steen J. Madsen, Fabio E. Rojas, Ti-Chen C. Feng, Bruce J. Tromberg

All HMC Faculty Publications and Research

In frequency-domain photonmigration (FDPM), two factors make high modulation frequencies desirable. First, with frequencies as high as a few GHz, the phase lag versus frequency plot has sufficient curvature to yield both the scattering and absorption coefficients of the tissue under examination. Second, because of increased attenuation, highfrequency photon density waves probe smaller volumes, an asset in small volume in vivo or in vitro studies. This trend toward higher modulation frequencies has led us to reexamine the derivation of the standard diffusion equation (SDE)from the Boltzman transport equation. We find that a second-order time-derivative term, ordinarily neglected in the derivation, …