Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Processes

Dartmouth College

Supernovae

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Supernova Resonance-Scattering Line Profiles In The Absence Of A Photosphere, Brian Friesen, E. Baron, David Branch, Bin Chen, Jerod T. Parrent, R. C. Thomas Nov 2012

Supernova Resonance-Scattering Line Profiles In The Absence Of A Photosphere, Brian Friesen, E. Baron, David Branch, Bin Chen, Jerod T. Parrent, R. C. Thomas

Dartmouth Scholarship

In supernova (SN) spectroscopy relatively little attention has been given to the properties of optically thick spectral lines in epochs following the photosphere's recession. Most treatments and analyses of post-photospheric optical spectra of SNe assume that forbidden-line emission comprises most if not all spectral features. However, evidence exists that suggests that some spectra exhibit line profiles formed via optically thick resonance-scattering even months or years after the SN explosion. To explore this possibility, we present a geometrical approach to SN spectrum formation based on the "Elementary Supernova" model, wherein we investigate the characteristics of resonance-scattering in optically thick lines while …


Evidence For Particle Acceleration To The Knee Of The Cosmic Ray Spectrum In Tycho’S Supernova Remnant, Kristoffer A. Eriksen, John P. Hughes, Carles Badenes, Robert Fesen Feb 2011

Evidence For Particle Acceleration To The Knee Of The Cosmic Ray Spectrum In Tycho’S Supernova Remnant, Kristoffer A. Eriksen, John P. Hughes, Carles Badenes, Robert Fesen

Dartmouth Scholarship

Supernova remnants (SNRs) have long been assumed to be the source of cosmic rays (CRs) up to the "knee" of the CR spectrum at 10^15 eV, accelerating particles to relativistic energies in their blast waves by the process of diffusive shock acceleration (DSA). Since cosmic ray nuclei do not radiate efficiently, their presence must be inferred indirectly. Previous theoretical calculations and X-ray observations show that CR acceleration modifies significantly the structure of the SNR and greatly amplifies the interstellar magnetic field. We present new, deep X-ray observations of the remnant of Tycho's supernova (SN 1572, henceforth Tycho), which reveal a …