Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Chemical Self-Assembly Strategies Toward The Design Of Molecular Electronic Circuits, Dustin Olson Dec 2019

Chemical Self-Assembly Strategies Toward The Design Of Molecular Electronic Circuits, Dustin Olson

Theses and Dissertations

The field of molecular electronics is generally divided into one of two major categories, the first focusing on the unique functionalization of single molecules to produce electronic behavior, the other utilizing large assemblies of molecules to produce electronic behavior. The former approach is largely attributed to the seminal paper by Aviram and Ratner in which they proposed a molecular donor-bridge-acceptor (D-B-A) type architecture could lead to single molecule rectification producing electronic effects similar to conventional semiconductor based diodes. Extensive research has been carried out in both fields as it is foreseen that new approaches to electronics miniaturization will be necessary …


Control Strategies For Multi-Evaporator Vapor Compression Cycles, Sunderlin D. Jackson Mar 2019

Control Strategies For Multi-Evaporator Vapor Compression Cycles, Sunderlin D. Jackson

Theses and Dissertations

Next-generation military aircraft must be able to handle highly transient thermal loads that exceed the ability of current aircraft thermal subsystems. Vapor compression cycle systems are a particular refrigeration technology that is an attractive solution for dealing with this challenge, due primarily to their high efficiency. However, there are several barriers to realizing the benefits of vapor cycles systems for controlling thermal loads in military aircraft. This thesis focuses on addressing the challenge of controlling vapor cycles in the presence of highly transient evaporator heat loads. Specifically, a linear quadratic regulator (LQR) is designed for a simple vapor cycle system, …


Adhesion At Solid/Liquid Interfaces, Neda Ojaghlou Jan 2019

Adhesion At Solid/Liquid Interfaces, Neda Ojaghlou

Theses and Dissertations

The adhesion at solid/liquid interface plays a fundamental role in diverse fields and helps explain the structure and physical properties of interfaces, at the atomic scale, for example in catalysis, crystal growth, lubrication, electrochemistry, colloidal system, and in many biological reactions. Unraveling the atomic structure at the solid/liquid interface is, therefore, one of the major challenges facing the surface science today to understand the physical processes in the phenomena such as surface coating, self-cleaning, and oil recovery applications. In this thesis, a variety of theory/computational methods in statistical physics and statistical mechanics are used to improve understanding of water adhesion …


Nanostructured Materials For Photocatalysis, Water Treatment And Solar Desalination, Hiran D. Kiriarachchi Jan 2019

Nanostructured Materials For Photocatalysis, Water Treatment And Solar Desalination, Hiran D. Kiriarachchi

Theses and Dissertations

Maintaining a constant supply of clean drinking water is among the most pressing global challenges in our time. About one-third of the population is affected by the water scarcity and it can only get worse with climate change, rapid industrialization, and the population growth. Even though nearly 70 percent of the planet is covered by water, the consumable freshwater content is only 2.5 percent of it. Unfortunately, the accessible portion of it is only 1 percent. Even so, most of the freshwater bodies are choked with pollution. Considering the vast availability of saline water on the planet and the increasing …


Metal Nanoparticle Synthesis By Photochemical Reduction With A High-Intensity Focused Laser Beam, Victoria K. Meader Jan 2019

Metal Nanoparticle Synthesis By Photochemical Reduction With A High-Intensity Focused Laser Beam, Victoria K. Meader

Theses and Dissertations

Colloidal, metallic nanoparticles have myriad applications, but they are most ideal when they are monodisperse, and demonstrate maximum catalytic utility when they are small (< 5 nm) and uncoated; because their surface area is accessible and maximized. Laser- assisted metal nanoparticle synthesis is a ‘green’ method that has become a topic of active research because it is able to produce uncoated or ‘naked’ products. The nanoparticles synthesized in this work were formed through the reduction of metal salts in aqueous solutions; but the reducing agent is an electron-dense microplasma generated by the laser pulse interacting with the media. Because no chemical reducing agents or stabilizers are needed, the products have no surfactants.

The underlying reaction mechanisms that drive this type of synthesis are generally understood, however, there is insufficient detail that would allow control over the formation of ultimate product morphologies and size distributions. The metals examined in this thesis are: gold, whose formation follows an autocatalytic rate law; and silver, whose formation follows a first-order rate law. Through my research, I was able to …