Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry

University of Nebraska - Lincoln

Water

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Resolving The Hono Formation Mechanism In The Ionosphere Via Ab Initio Molecular Dynamic Simulations, Rongxing He, Lei Li, Jie Zhong, Chongqin Zhu, Joseph S. Francisco, Xiao Cheng Zeng Jan 2016

Resolving The Hono Formation Mechanism In The Ionosphere Via Ab Initio Molecular Dynamic Simulations, Rongxing He, Lei Li, Jie Zhong, Chongqin Zhu, Joseph S. Francisco, Xiao Cheng Zeng

Xiao Cheng Zeng Publications

Solar emission produces copious nitrosonium ions (NO+) in the D layer of the ionosphere, 60 to 90 km above the Earth’s surface. NO+ is believed to transfer its charge to water clusters in that region, leading to the formation of gaseous nitrous acid (HONO) and protonated water cluster. The dynamics of this reaction at the ionospheric temperature (200–220 K) and the associated mechanistic details are largely unknown. Using ab initio molecular dynamics (AIMD) simulations and transition-state search, key structures of the water hydrates—tetrahydrate NO+(H2O)4 and pentahydrate NO+(H2O)5 …


Molecular Dynamics Studies Of Simple Model Fluids And Water Confined In Carbon Nanotube, Jun Wang Jan 2010

Molecular Dynamics Studies Of Simple Model Fluids And Water Confined In Carbon Nanotube, Jun Wang

Department of Chemistry: Dissertations, Theses, and Student Research

Molecular Dynamics (MD) simulation is one of the most important computational techniques with broad applications in physics, chemistry, chemical engineering, materials design and biological science. Traditional computational chemistry refers to quantum calculations based on solving Schrodinger equations. Later developed Density Functional Theory (DFT) based on solving Kohn-Sham equations became the more popular ab initio calculation technique which could deal with ~1000 atoms by explicitly considering electron interactions. In contrast, MD simulation based on solving classical mechanics equations of motion is a totally different technique in the field of computational chemistry. Electron interactions were implicitly included in the empirical atom-based potential …