Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry

Missouri State University

Theses/Dissertations

Density functional theory

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Improving Biodiesel Through Pyrolysis: Direct Dynamics Investigations Into Thermal Decomposition Of Methyl Linoleate, Michael Bakker May 2020

Improving Biodiesel Through Pyrolysis: Direct Dynamics Investigations Into Thermal Decomposition Of Methyl Linoleate, Michael Bakker

MSU Graduate Theses

Dependence on petroleum and petrochemical products is unsustainable as it is both a finite resource and environmentally hazardous. Biodiesel is a proposed alternative, but has complications including possessing poor cold weather operability and lacking the ability to supplement other petrochemical products (e.g., ethylene, hexane, etc.) relied upon in society. Pyrolysis of biodiesel has demonstrated the formation of smaller hydrocarbons comprising many of these petrochemical products. Our aim is to computationally simulate the pyrolysis of methyl linoleate, the most prevalent component in biodiesel formed in the US (from soybean). We make use of unimolecular direct dynamics describing intramolecular processes, introducing Temperature …


Ab Initio Methyl Linoleate Bond Dissociation Energies: First Principles Fishing For Wise Crack Products, Zachary Ryan Wilson Aug 2017

Ab Initio Methyl Linoleate Bond Dissociation Energies: First Principles Fishing For Wise Crack Products, Zachary Ryan Wilson

MSU Graduate Theses

With the prices of petroleum reflecting demand for this finite resource, attention has been turned to alternative sources of energy. Biodiesel, defined as fatty acid methyl esters (FAMEs), exhibits many of the same properties as conventional diesel but is derived from biological sources. FAMEs are subsequently thermally cracked to form more light-weight petrochemical products. I aim to further understand the thermal cracking procedure, at an atomic-level, in hopes that this may aid in future engineering of viable fuels. I studied the effective computational modeling of bond disassociations in the FAME methyl linoleate. Bond dissociation in a 44-reaction database with known …