Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Physical Chemistry

PDF

Journal

2020

Lithium-ion batteries

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Cycling Performance And Solid-Electrolyte-Interphase Synergic Formation Of Silicon Nanoparticles In The Concentrated Electrolyte With Additives, Zeng-Hua Chang, Fu-Juan Han, Xi-Xin Yang, Jian-Tao Wang, Shi-Gang Lu Oct 2020

Cycling Performance And Solid-Electrolyte-Interphase Synergic Formation Of Silicon Nanoparticles In The Concentrated Electrolyte With Additives, Zeng-Hua Chang, Fu-Juan Han, Xi-Xin Yang, Jian-Tao Wang, Shi-Gang Lu

Journal of Electrochemistry

In this paper, the effects of additives on the cycling performance of silicon nanoparticles in LiFSI-(PC)3 based concentrated electrolytes were systematically studied. The structures of silicon nanoparticle electrodes and the evolution of solid-electrolyte-interphase were characterized by scanning electron microscopy (SEM), attenuated total reflection Flourier transformed infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The results indicated that the additives can efficiently improve the cycling performance of silicon nanoparticle electrodes. In LiFSI-(PC)3 concentrated electrolyte, the capacity became 574.8 mAh·g-1 after 300 cycles with the initial capacity of 3296.1 mAh·g-1. In contrast, the 3% LiDFOB, 3% FEC and 3% TMSB-containing …


Research Progresses In Ni-Co-Mn/Al Ternary Concentration Gradient Cathode Materials For Li-Ion Batteries, Chun-Fang Zhang, Wen-Gao Zhao, Shi-Yao Zheng, Yi-Xiao Li, Zheng-Liang Gong, Zhong-Ru Zhang, Yong Yang Feb 2020

Research Progresses In Ni-Co-Mn/Al Ternary Concentration Gradient Cathode Materials For Li-Ion Batteries, Chun-Fang Zhang, Wen-Gao Zhao, Shi-Yao Zheng, Yi-Xiao Li, Zheng-Liang Gong, Zhong-Ru Zhang, Yong Yang

Journal of Electrochemistry

Nickel-rich ternary materials with large reversible capacity as well as high operating voltage are considered as the most promising candidate for next generation lithium-ion batteries (LIBs). However, the inferior cycle stability and thermal stability have limited their widely commercial applications. Concentration gradient design of Ni-Co-Mn/Al ternary concentration gradient materials have been extensively studied in the past decade, which can ensure high cycle capacity while maintaining excellent cycle stability. In this paper, the latest research progresses in Ni-Co-Mn/Al ternary concentration gradient materials for LIBs are reviewed. Firstly, we summarize the different synthesis methods of ternary concentration-gradient materials, especially focusing on the …