Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Laser-Induced Modifications In Two-Dimensional Materials, Tariq Afaneh Nov 2020

Laser-Induced Modifications In Two-Dimensional Materials, Tariq Afaneh

USF Tampa Graduate Theses and Dissertations

Atomically thin two-dimensional (2D) materials have attracted a growing interest in the lastdecade from the fundamental point of view as well as their potential applications in functional devices. Due to their high surface-to-volume ratio, the physical properties of 2D materials are very sensitive to the environmental factor such as surrounding media and illumination conditions (e.g. light-mater interaction). In the first part of this dissertation I will present recent advances in developing laser-assisted methods to tune the physical properties of 2D transition metal dichalcogenides (TMDs). We demonstrate laser-assisted chemical modification ultrathin TMDs, locally replacing selenium by sulfur atoms. The photo-conversion process …


Breakthroughs In Obtaining Qm/Mm Free Energies, Phillip S. Hudson Apr 2020

Breakthroughs In Obtaining Qm/Mm Free Energies, Phillip S. Hudson

USF Tampa Graduate Theses and Dissertations

The computation of free energy is pivotal to understanding the fundamental nature of chemical phenomena. That is, whether a specific molecular outcome occurs spontaneously or is inherently unfavorable. The need to do this with consistent accuracy begs for the use of quantum mechanical (QM) methods. However, techniques for directly computing free energy differences with QM or mixed QM/MM methods are untenable, as the computational expense is quite exorbitant. At present, the most feasible approach for obtaining QM/MM free energies is employing the so-called indirect cycle, which relies on accurately computing free energy differences between low (e.g., molecular mechanical, MM) and …