Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Reeling In New Antibiotics: Synthesis And Antimicrobial Susceptibility Testing Of Zinc-Binding Clavanins From Styela Clava (Sea Squirt), Eduardo Badillo-Colberg May 2021

Reeling In New Antibiotics: Synthesis And Antimicrobial Susceptibility Testing Of Zinc-Binding Clavanins From Styela Clava (Sea Squirt), Eduardo Badillo-Colberg

Honors Scholar Theses

Clavanins have been a quite rarely studied antimicrobial peptide (AMP) family. Though the data in the few studies published on the matter and in theoretical experimental data presented by the Wang lab in their peptide library creation [14], in that the members of this family could potentially be quite effective novel antimicrobial candidates. Among those that have been targets of studies, Clavanin A has been at the forefront of this endeavor of finding effective novel antimicrobial peptides[14]. In these aforementioned studies, Clavanin A has been shown to be quite effective against many different bacterial strains, which begs the question as …


Toxicity Analysis Of 2’-Deoxyguanosine-N2-6-Aminopyrene And 2’-Deoxyguanosine-N2-8-Aminopyrene In Escherichia Coli, Emily Janeiro May 2020

Toxicity Analysis Of 2’-Deoxyguanosine-N2-6-Aminopyrene And 2’-Deoxyguanosine-N2-8-Aminopyrene In Escherichia Coli, Emily Janeiro

Honors Scholar Theses

Cancer is a disease that stems from genomic errors that are not corrected properly by cellular repair mechanisms. Errors are more likely to form when organisms are subjected to DNA damage by mutagenic compounds. 1-Nitropyrene, a nitrated polycyclic aromatic hydrocarbon (nitro-PAH), has been shown to be a potent mutagen that causes cancer. Nitro-PAHs can arise from diesel exhaust products in the environment. Out of all nitro-PAHs, 1-nitropyrene is found in largest quantities in the environment. This poses a great need to study its effects biochemically in order to address its toxicity in DNA. Other nitropyrene derivatives, including 1,6-dinitropyrene and 1,8-dinitropyrene, …


Methodology Development In Green Chemistry: Oxoammonium Salt Oxidations And Fluoroform Incorporation, Rebecca J. Wiles May 2015

Methodology Development In Green Chemistry: Oxoammonium Salt Oxidations And Fluoroform Incorporation, Rebecca J. Wiles

University Scholar Projects

Central to the advancement of small molecule synthesis is the ability to develop methodologies that reimagine well known chemistry in a new, environmentally friendly manner. In this thesis two central themes emerge: oxoammonium salt oxidations and trifluoromethyl incorporation using fluoroform gas. Several projects have been developed surrounding oxoammonium salt chemistry, which are featured by their mild conditions, ease of use, and the metal-free, recyclable nature of the oxidant. Trifluoromethylation using fluoroform gas finds its utility in the use of a potent greenhouse gas waste product as a benchtop reagent.


Green Chemistry As A Tool For Understanding The Toxic Substances Control Act: A Lecture Module For Undergraduate Students, Molly R. Blessing May 2015

Green Chemistry As A Tool For Understanding The Toxic Substances Control Act: A Lecture Module For Undergraduate Students, Molly R. Blessing

Honors Scholar Theses

The Toxic Substances Control Act (TSCA) is the central form of chemical regulation existent in the United States today, yet scientists are often unaware or uncertain of its provisions. Violations of TSCA by unknowing chemists set industry and government unnecessarily at odds. A lecture on TSCA was developed for undergraduate students that uses the concept of green chemistry to promote interest and incentivize learning. Green chemistry methods are cleaner and less wasteful than traditional chemical ones, and many companies using them are at the forefront of technological innovation. The lecture explains both green chemistry and TSCA, includes company case studies, …


Methodology Development In Green Chemistry: Oxoammonium Salt Oxidations And Fluoroform Incorporation, Rebecca J. Wiles May 2015

Methodology Development In Green Chemistry: Oxoammonium Salt Oxidations And Fluoroform Incorporation, Rebecca J. Wiles

Honors Scholar Theses

Central to the advancement of small molecule synthesis is the ability to develop methodologies that reimagine well known chemistry in a new, environmentally friendly manner. In this thesis two central themes emerge: oxoammonium salt oxidations and trifluoromethyl incorporation using fluoroform gas. Several projects have been developed surrounding oxoammonium salt chemistry, which are featured by their mild conditions, ease of use, and the metal-free, recyclable nature of the oxidant. Trifluoromethylation using fluoroform gas finds its utility in the use of a potent greenhouse gas waste product as a benchtop reagent.