Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 28 of 28

Full-Text Articles in Physical Sciences and Mathematics

The Effects Of Free Volume And Processing On The Development Of Gas Separation Membranes, Jacob Schekman May 2024

The Effects Of Free Volume And Processing On The Development Of Gas Separation Membranes, Jacob Schekman

Dissertations

Structure, thermal, mechanical, gas transport, and free volume properties of thiol-ene based systems are investigated and discussed. In the pursuit of generating low energy-cost polymer membranes for gas separation, it became apparent that UV-curing of thiol-ene materials presented several routes toward achieving this goal. Network structure plays a vital role in determining the gas transport properties of membrane materials. UV photopolymerization techniques provide a means to rapidly vitrify network morphologies which can be tuned depending on choice of monomer. Thiol-ene monomers offer a broad range of precursor materials from which to choose for the design of functional membrane materials.

Chapter …


Separating The R Vs. S Enantiomers Of A Quinoline Aimed At Inhibiting The Allosteric Binding Pocket Of Hiv-1 Integrase, Madison Canfield May 2023

Separating The R Vs. S Enantiomers Of A Quinoline Aimed At Inhibiting The Allosteric Binding Pocket Of Hiv-1 Integrase, Madison Canfield

Honors Theses

HIV-1 is a retroviral disease that infects CD4+ T cells in the body. Once inside the body, HIV-1 uses human cell machinery to replicate and reproduce using several enzymes to reverse transcribe viral RNA to DNA and integrate the viral DNA into the human genome to reproduce. Several drugs, such as NRTIs, INSTIs, NNRTIs, and PIs, have been created to inhibit specific parts of the viral life cycle and are used in combination to fight HIV-1. However, these medications face challenges of viral mutation and resistance, which increases the importance of creating more potent and effective drugs. Recently, a new …


Separating The R Vs. S Enantiomers Of A Quinoline Aimed At Inhibiting The Allosteric Binding Pocket Of Hiv-1 Integrase, Madison Canfield May 2023

Separating The R Vs. S Enantiomers Of A Quinoline Aimed At Inhibiting The Allosteric Binding Pocket Of Hiv-1 Integrase, Madison Canfield

Honors Theses

HIV-1 is a retroviral disease that infects CD4+ T cells in the body. Once inside the body, HIV-1 uses human cell machinery to replicate and reproduce using several enzymes to reverse transcribe viral RNA to DNA and integrate the viral DNA into the human genome to reproduce. Several drugs, such as NRTIs, INSTIs, NNRTIs, and PIs, have been created to inhibit specific parts of the viral life cycle and are used in combination to fight HIV-1. However, these medications face challenges of viral mutation and resistance, which increases the importance of creating more potent and effective drugs. Recently, a new …


Designing Dynamic And Degradable Polymeric Materials With Thiol-X Chemistries, Reese Sloan Jul 2022

Designing Dynamic And Degradable Polymeric Materials With Thiol-X Chemistries, Reese Sloan

Dissertations

With plastic production poised to increase in coming years, there arises a need to develop new polymeric materials designed to combat the global pollution crisis. A commonly utilized approach in addressing this challenge is to employ a responsive functional moiety into the polymer architecture. Thiol-X reactions, a commonly utilized class of “click” reactions, have garnered broad implementation in new stimuli-responsive materials. This work specifically focuses on utilizing radical-mediated thiol-ene coupling and base-catalyzed thiol-isocyanate reactions to develop a library of ternary thiol-ene/thiourethane covalent adaptable networks (CANs) and hydrolytically labile poly(thioether ketal) thermoplastics. CANs are a class of network materials capable of …


Investigation Of N-Sulfonyliminium Ion Triggered Cyclizations For The Synthesis Of Piperidine Scaffolds, Kaitlyn Birkhoff Dec 2021

Investigation Of N-Sulfonyliminium Ion Triggered Cyclizations For The Synthesis Of Piperidine Scaffolds, Kaitlyn Birkhoff

Honors Theses

In consideration of the on-going global pandemic, immediate access to Food and Drug Administration approved pharmaceutical medications and vaccines is a matter of utmost priority to our national healthcare system. One significant modality in managed care is the dispensation of prescription drugs for the prevention or treatment of illnesses and diseases. According to the Centers for Disease Control and Prevention, physicians order and provide over 2.9 billion prescriptions each year with analgesics, antihyperlipidemics, and dermatological agents being the most prescribed therapeutic classes. Within those classes exists a disparate variety of chemical structures that must be prepared on a metric ton …


Techniques For The Enantioselective Asymmetric Synthesis Of Benzyl Substituted Malonic Acid Esters, Madison Hansen Dec 2021

Techniques For The Enantioselective Asymmetric Synthesis Of Benzyl Substituted Malonic Acid Esters, Madison Hansen

Honors Theses

A popular method for the enantioselective synthesis of substituted malonic half esters is hydrolysis via Pig Liver Esterase (PLE), however some substrates produce low enantiomeric excess, namely benzyl-substituted malonic esters. Presented here are alternative methods explored for this synthesis, the first being phase-transfer catalyzed hydrolysis via N-benzyl quaternary ammonium salts derived from cinchona alkaloids. The second method utilized chiral auxiliary directed benzylation with auxiliaries including menthol and oxazolidinones. Though unsuccessful, this research provided valuable groundwork in the investigation for the enantioselective asymmetric synthesis of benzyl-substituted malonic acid esters.

Keywords: Pig Liver Esterase, Enantioselectivity, Phase-Transfer Catalysis, Cinchona Alkaloids, Quaternary Ammonium …


Synthesis Of Molecular Probes For The Detection Of Toxic Analytes, Rashid Mia Dec 2021

Synthesis Of Molecular Probes For The Detection Of Toxic Analytes, Rashid Mia

Dissertations

Two different types of molecular probes have been synthesized. The first family of probes is the coumarin class of compounds. These chemodosimters are referred to as Low Molecular Weight Fluorescent probes (LMFP). The other type of molecular probe is a macrocycle known as a pillar[5]arene receptor.

The chemodosimters (2.12a-c and 3.12a) were synthesized in four to five steps. The photophysical properties were extensively studied in various solvent systems (DMSO, CH3CN, DMF, MeOH, EtOH, Me2CO, MeCO2Et, CHCl3, C6H5Me, and C6H6). Dimethyl sulfoxide (DMSO) …


The Power Of Sulfur: A Study Of An Isothiocyanate Chiral Derivatizing Agent, Thioamide Based Chiral Solvating Agents, And The Geometry Of Sulfonamides, Emily B. Crull May 2021

The Power Of Sulfur: A Study Of An Isothiocyanate Chiral Derivatizing Agent, Thioamide Based Chiral Solvating Agents, And The Geometry Of Sulfonamides, Emily B. Crull

Dissertations

This three-part dissertation is connected by the thread of utilizing sulfur-based functional groups, hence the power of sulfur. The first project was the development of a pentafluorobenzene based isothiocyanate chiral derivatizing agent (CDA), a class of compounds that differentiate enantiomers through covalent bond formation. This project, which was addressed using a combination of synthetic and computational methods and NMR analysis, gave rise to an CDA that was highly selective for amines and computationally predictable. Branching off of that, the second project demonstrated the use of two thioamide chiral solvating agents (CSAs), which had never been reported as a core functional …


Synthesis Of Alpha-Methylselenocysteine, Its Relevant Analogues, And An Unnatural Glutathione Disulfide Core, Robert J. Wehrle Aug 2020

Synthesis Of Alpha-Methylselenocysteine, Its Relevant Analogues, And An Unnatural Glutathione Disulfide Core, Robert J. Wehrle

Dissertations

Selenoproteins, such as glutathione peroxidase, have gained interest for their ability to act as antioxidants, and their potential to act as anti-cancer agents. Synthesizing and studying selenoproteins can be problematic, however, due to their propensity to degrade from over-oxidation. The degradation from over-oxidation can be avoided by the incorporation of the unnatural amino acid, alpha-methylselenocysteine. A synthesis utilizing methyl malonic esters was used to synthesize protected (R)-alpha-methylselenocysteine efficiently (46% over four steps) and in high enantio-purity (88% enantiomeric excess). Using similar procedures, the (S)-enantiomer was also synthesized as well as a beta-analogue.

The use of enzymes …


A Study On The Modifications Of [2.2]Paracyclophane And Their Effects On The Enantioselectivity Of The Copper Catalyzed Cyclopropanation Reaction, Yousef Dawoud May 2019

A Study On The Modifications Of [2.2]Paracyclophane And Their Effects On The Enantioselectivity Of The Copper Catalyzed Cyclopropanation Reaction, Yousef Dawoud

Honors Theses

The use of chiral [2.2]paracyclophane Schiff-base ligands has been shown to induce enantioselectivity in the copper catalyzed cyclopropanation of styrene with diazoesters. 1 Previous research by Dr. Masterson tested Schiff-base ligands based on 4- amino[2.2]paracyclophane with moderate enantioselectivity. In this project, the Schiff-base N- salicylidene-4-amino[2.2]paracyclophane, was modified by way of Grignard addition to the imine carbon and its enantioselective properties were explored with the copper catalyzed cyclopropanation. The methyl Grignard addition to N- salicylidene-4-amino[2.2]paracyclophane was successful in producing the amino alcohol and the amino alcohol was characterized. The amino alcohol was produced from the R enantiomer of the Schiff-base and …


Manipulation Of Noncovalent Interactions For The Synthesis And Use Of Natural Product Synthons, Alison P. Hart May 2019

Manipulation Of Noncovalent Interactions For The Synthesis And Use Of Natural Product Synthons, Alison P. Hart

Dissertations

Natural products are widely used in the pharmaceutical industry, in agriculture, and as specialty chemicals. Methodology development focuses on optimizing the key organic reactions to access these natural products while trying to limit the overall number of synthetic steps. Key bond forming strategies are sought to provide new ways to address carbon-carbon or carbon-heteroatom bonds. The advancement of new asymmetric reactions to generate enantiopure products from achiral starting materials is a vital area of research. The objectives addressed in this dissertation include: 1) the development of a general reductive conversion of esters to ethers with a broad substrate scope accessing …


Synthetic And Theoretical Studies For Cyclization Reactions To Form C-C And C-N Bonds, Nicholas Jentsch Aug 2018

Synthetic And Theoretical Studies For Cyclization Reactions To Form C-C And C-N Bonds, Nicholas Jentsch

Dissertations

Natural product total synthesis provides an alternative method for obtaining medicinally relevant compounds in a more efficient process with higher yields than what nature can provide. Natural products pose significant synthetic challenges due to the unique heterocyclic skeletons with fused and spirocyclic ring systems. Therefore, it is paramount to develop efficient reaction methodologies targeting substructures such as cyclic ureas and spiro[4.5]decanes which are prominent among marine natural products and Lycopodium alkaloids, respectively. Presented here is a compilation of research seeking to develop synthetic methods for the construction of cyclic moieties such as those previously mentioned. The objectives that are addressed …


Thermosetting Polymers Via Azide Alkyne Cycloaddition, Richard H. Cooke Iii Jul 2018

Thermosetting Polymers Via Azide Alkyne Cycloaddition, Richard H. Cooke Iii

Dissertations

This dissertation exploits properties inherent to azide-alkyne cycloaddition and applies practical solutions to difficult problems. Chapter II addresses structure-property relationships in glassy azido-alkyne matrices by varying the identity of the central linkage within tetrapropargyl bis-aniline-type crosslinkers, and by the addition or omission of Cu(I) catalyst. This systematic study showed that an ether or methylene linkage yielded lower melting tetrapropargyl crosslinkers that were soluble in, and produced homogeneous, networks when cured with, a standard azido resin, di(3-azido-2-hydroxypropyl) ether of bisphenol-A; in contrast, a sulfone linkage yielded a relatively insoluble crosslinker and poorly dispersed, heterogeneous networks when reacted with the same …


An Exploration Of Pyrrole Groups On The Enantioselectivity Of Pig Liver Esterase, Brian Long May 2018

An Exploration Of Pyrrole Groups On The Enantioselectivity Of Pig Liver Esterase, Brian Long

Honors Theses

Pig Liver Esterase (PLE) is a serine protease enzyme that can interact with one side of a diester to hydrolyze the ester to a carboxylic acid, and research has found that the level of hydrophobicity of side groups can impact the enantioselectivity of PLE hydrolysis.1, 2 The Jones Model is what current researchers use to model the active site of PLE, but the nature of its binding pockets, namely the Hydrophobic Long (HL) pocket, has been called into question.3 Dimethyl 2-((pyrrole-2-yl)methyl)-2-methylmalonate was prepared to be subjected to PLE hydrolysis to see whether enantioselectivity was found. Chiral HPLC revealed 25.32% enantiomeric …


Diastereoselective Synthesis Of 2,4,6-Trisubstituted Piperidines Via Aza-Prins Cyclization, John A. Hood May 2018

Diastereoselective Synthesis Of 2,4,6-Trisubstituted Piperidines Via Aza-Prins Cyclization, John A. Hood

Honors Theses

The nitrogen heterocycles are shared amongst 59% of Food and Drug Administration (FDA) approved small molecule pharmaceuticals with the six-membered piperidine representing the most common moiety. Given the versatility and potential to yield derivatives with broad biological activities, the discovery of new chemical methods to generate these heterocycles in a more time and cost-efficient manner is desired. While there are existing racemic methods to access this class of molecule, the objective of this research is to pioneer a new novel six-step method to generate 2,4,6-trisubstituted piperidines with stereoselective control.

The first step is a condensation between a nonenolizable aldehyde and …


Synthesis And Catalytic Evaluation Of Novel C-Alpha-Methyl-Beta-Proline Analogues, And Concise Synthetic Approach To Nh-Fmoc-S-Trityl-C-Alpha-Methyl Cysteine, Hari Kiran Kotapati Aug 2017

Synthesis And Catalytic Evaluation Of Novel C-Alpha-Methyl-Beta-Proline Analogues, And Concise Synthetic Approach To Nh-Fmoc-S-Trityl-C-Alpha-Methyl Cysteine, Hari Kiran Kotapati

Dissertations

In the field of chemistry there is a growing demand for small molecule organocatalysts such as amino acids, more specifically proline and its analogues, which could catalyze various key chemical reactions in the synthesis of several biologically important molecules. Even though natural proline is reported to catalyze various chemical reactions, its use as organocatalyst is limited mainly due to the solubility issues in the reaction media and high catalyst loadings, which is not very ideal for bulk scale manufacturing. To address these limitations we planned to develop unnatural analogues of proline that could catalyze the reactions with lower catalyst loadings …


Advancing Structure-Property Relationships In Functional Materials Via Thiol-Ene Photopolymerization, Brian Richard Donovan May 2017

Advancing Structure-Property Relationships In Functional Materials Via Thiol-Ene Photopolymerization, Brian Richard Donovan

Dissertations

Thiol-ene photopolymerizations provide a robust and versatile synthetic pathway to functional materials, and owing to the radical step-growth nature of polymerization and the resulting homogenous network structure, provide non-convoluted insight into how network chemistry influences and dictates macromolecular properties.

The first facet of this dissertation focuses on the design and synthesis of bio-inspired, thin film adhesives for dry and aqueous adhesion. Drawing inspiration from the intertidal marine mussel, Chapter II details the synthesis of adhesive networks containing a monofunctional catechol-based monomer. The inclusion of a catechol group resulted in significant improvements in adhesion on a variety of substrates. In Chapter …


Design And Synthesis Of Dynamic Covalent Polymer Scaffolds With Controlled Architectures, Emily Annette Hoff Dec 2016

Design And Synthesis Of Dynamic Covalent Polymer Scaffolds With Controlled Architectures, Emily Annette Hoff

Dissertations

The design and synthesis of functional, controlled polymer architectures is essential to the development of new materials with precise and tailorable properties or applications. The work described in this dissertation focuses on the development of controlled polymer architectures with dynamic linkages for the design of multifunctional materials and surfaces via robust, efficient, and stimuli-responsive strategies.

In Chapter III, a post-polymerization modification strategy based on ambient temperature nucleophilic chemical deblocking of polymer scaffolds bearing N-heterocycle blocked isocyanate moieties is reported. Room temperature RAFT polymerization of three azole-N-carboxamide methacrylates, including 3,5-dimethyl pyrazole, imidazole, and 1,2,4-triazole derivatives, afforded reactive polymer scaffolds …


Correlation Of Polymer Performance And Hansen Solubility Parameters, Daniel Jobse Mania Aug 2016

Correlation Of Polymer Performance And Hansen Solubility Parameters, Daniel Jobse Mania

Master's Theses

Ready-to-use (RTU) grout is becoming more important to the finish and remodeling construction industry. Market research shows it is a fast-growing product that not only is creating its own space, but is beginning to supplant existing technology.

The original intent of this research was to investigate formulation parameters and how they affect grout performance. It was learned that particle size and oil absorption (OA) value are important filler properties that affect performance as much as adequate packing density and optimal pigment volume concentration (PVC) without going beyond critical PVC (CPVC).

Polymer architecture was also determined to be extremely important, but …


The Synthesis Of Chemosensors For Toxic Analytes, Johnathan Hugh Broome Aug 2016

The Synthesis Of Chemosensors For Toxic Analytes, Johnathan Hugh Broome

Dissertations

A number of chemosensors have been designed and synthesized to target cations (Zn2+ions), neutral molecules (cathinones), charged molecules (aminoindanes), and anions. The Zn2+ ion sensor featured bistriazole designed binding unit and ferrocene signaling units. Characterization of Zn2+ ion binding was carried out with electrochemical techniques (CV and DPV), 1H-NMR, mass spectrometry, and molecular modelling. It exhibited a 1:1 binding stoichiometry with Zn2+ and had an affinity for ZnCl2 (Log K1:1 = 4.1 ± 0.02) over other Zn2+ salts.

The cathinone probe was designed to selectively bind mephedrone over common street drugs …


Synthesis And Application Of (R)-3-Methylpyrrolidine-3-Carboylic Acid, Shelby D. Dickerson May 2016

Synthesis And Application Of (R)-3-Methylpyrrolidine-3-Carboylic Acid, Shelby D. Dickerson

Honors Theses

L-Proline is an amino acid widely used in pharmaceutical and biotechnological research due to its catalytic activity and biological relevance. L-Proline has been recognized and utilized as an organocatalyst, which allows cleaner, more sustainable reactions. However, one issue with L-proline is its low solubility in organic systems, limiting its reactivity and efficiency, especially when considering industrial research. Two reactions that utilize L-Proline are the Michael and Aldol but require 100 mol% of L-Proline and 30 mol% of L-Proline, respectively. This research will focus on the synthesis of an analogue of L-Proline utilizing inexpensive, commercially available reagents. A variety of organic …


Investigation Of How Hydrogen Bonding Affects The Enantiomeric Excess Of Pig Liver Esterase Promoted Hydrolysis Of Pro-Chiral Substrates, Jacob E. Pruett May 2016

Investigation Of How Hydrogen Bonding Affects The Enantiomeric Excess Of Pig Liver Esterase Promoted Hydrolysis Of Pro-Chiral Substrates, Jacob E. Pruett

Honors Theses

Pig Liver Esterase is a cost effective enzyme for ester hydrolysis. In our group, it is vital for creating chiral molecules for the synthesis of unnatural amino acids of potential biological importance. It has been previously found that the enantiomeric excess (%ee) of the PLE hydrolysis reaction increases drastically with the addition of co-solvents that are able to both accept and donate hydrogen bonds. This research endeavors to see if substrates of enhanced hydrogen bonding ability also increase the stereoselectivity of PLE hydrolyses. Diester malonate was covalently linked with a furan ring in both the third and second position from …


Synthesis And Characterization Of "Click Inspired" Thiol-Ene-Fullerene Nanocomposites, Amber Danielle Windham May 2016

Synthesis And Characterization Of "Click Inspired" Thiol-Ene-Fullerene Nanocomposites, Amber Danielle Windham

Dissertations

This work explores the covalent incorporation of C60 and Sc3N@C80 fullerenes into thiol-ene networks by a facile, one-pot photochemical reaction with multifunctional thiol and alkene monomers. Synthesis of disulfide bonds within the tri-functional thiol monomer served to photochemically initiate the reaction when cleaved. This was followed by thermal curing of the pre-polymer for preparation of fullerene-containing thiol-ene films. Films were characterized by standard techniques including infrared spectroscopy, gel percent, and thermogravimetric analysis. The role of C60 and Sc3N@C80 as suitable alkenes for free-radical reaction with multifunctional thiols was investigated by preparing a …


Curing Of Polymer Thermosets Via Click Reactions, Mark Richard Brei May 2016

Curing Of Polymer Thermosets Via Click Reactions, Mark Richard Brei

Dissertations

In the first project, an azide functional resin and tetra propargyl aromatic diamines were fabricated for use as a composite matrix. These systems take already established epoxy/amine matrices and functionalize them with click moieties. This allows lower temperatures to be used in the production of a thermoset part. These new systems yield many better mechanical properties than their epoxy/amine derivatives, but their Tgs are low in comparison.

The second project investigates the characterization of a linear system based off of the above azide functional resin and a difunctional alkyne. Through selectively choosing catalyst the linear system can show …


Asymmetric Synthesis Of Cα-Methyl-Γ- And Δ-Amino Acids From A Common Synthon And Evaluation Of Thionyl Chloride Assisted Peptide Esterifications, Emily Rose Vogel Dec 2015

Asymmetric Synthesis Of Cα-Methyl-Γ- And Δ-Amino Acids From A Common Synthon And Evaluation Of Thionyl Chloride Assisted Peptide Esterifications, Emily Rose Vogel

Dissertations

Cα-methyl-γ- and δ-unnatural amino acids (UAAs) are important class of biomolecules used extensively as structural scaffolds, peptidomimetics, and in the development of pharmaceuticals. Due to steric congestion surrounding the quaternary center, asymmetric preparation of α,α-disubstituted UAAs are synthetically challenging. Herein, two methods for the synthesis of chiral synthons to prepare Cα-methyl-γ- and -δ-UAAs are reported. A crucial step in both strategies includes an enzymatic hydrolysis of prochiral malonic esters with pig liver esterase (PLE). The first method utilizes the Meyer Schuster rearrangement to prepare α,β-unsaturated diesters synthons, but the preparation of the precursor propargyl alcohol decomposes …


Molecular Probes For The Detection Of Zn2+ And Fe3+ Ions, Erendra Manandhar Dec 2014

Molecular Probes For The Detection Of Zn2+ And Fe3+ Ions, Erendra Manandhar

Dissertations

A number of molecular probes have been designed and synthesized for the detection of Zn2+ and Fe3+ ions. Two types of functional groups have been incorporated into the molecular scaffolds to utilize different fluorescent mechanisms. The first class of receptors contains a pyrene moiety. These molecular probes use the excimer mechanism for the detection of Zn2+ ion. The probes work well in an organic solvent with a detection limit of 20 nM (one ppb). Alternatives are made to make them water soluble, but this proved to be difficult. An interesting ion-induced self-assembly system will also be discussed. …


Enzyme, Cosolvent, And Substrate Interactions In Ple Hydrolysis Reactions And Evaluation Of The Stability Of An Unnatural Glutathione Analogue, Maureen Elizabeth Smith Dec 2014

Enzyme, Cosolvent, And Substrate Interactions In Ple Hydrolysis Reactions And Evaluation Of The Stability Of An Unnatural Glutathione Analogue, Maureen Elizabeth Smith

Dissertations

Prochiral diester malonates have been hydrolyzed in the presence of Pig Liver Esterase (PLE). Several of the diesters produced the respective half-ester in moderate to high enantioselectivity. A series of cosolvent assays were performed to evaluate the ability of the cosolvent to influence the enantioselective outcome of the hydrolysis reactions. Ethanol produced the largest changes in enantioselectivity of all solvents evaluated. The isoenzymes of PLE were also evaluated and provided very different enantioselective outcomes than that of crude PLE. A series of NMR titrations was performed to explore the interactions between the substrates and ethanol cosolvents.

Improvements to our previously …


Developing A Biosensor For The Detection Of Bacteria: A Comparison Of Methods For Isolating Bacteria-Specific Antibodies, Scott Allen Walper May 2010

Developing A Biosensor For The Detection Of Bacteria: A Comparison Of Methods For Isolating Bacteria-Specific Antibodies, Scott Allen Walper

Dissertations

The antigen-antibody interaction is known to be a high affinity and highly specific interaction that can readily be used for the detection and identification of biological and chemical agents. These studies were conducted to develop an efficient and cost-effective method of obtaining bacteria-specific antibody molecules for integration into a fielddeployable biosensor. Antigen-binding molecules were obtained both as full-length IgG molecules from a hybridoma cell line and as recombinant single-chain Fv (scFv) antibodies isolated from naïve and immunize libraries. Monoclonal and recombinant antibody systems were compared on the effectiveness of producing new, target-specific molecules; the efficiency of production and purification of …