Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Optics

University of Central Florida

Electronic Theses and Dissertations, 2020-

Theses/Dissertations

2021

Articles 1 - 12 of 12

Full-Text Articles in Physical Sciences and Mathematics

Nonlinear Light-Matter Interactions In Novel Crystals For Broadband Mid-Infrared Generation, Taiki Kawamori Dec 2021

Nonlinear Light-Matter Interactions In Novel Crystals For Broadband Mid-Infrared Generation, Taiki Kawamori

Electronic Theses and Dissertations, 2020-

Mid-infrared (MIR) laser sources have demonstrated diverse applications in science and technology. For spectroscopy applications, numerous molecules have unique absorption features in this range, and one needs a spectrally broad coherent laser source for parallel detection of mixtures of species. Frequency down-conversion in nonlinear optical materials via second-order nonlinear susceptibility is one of the promising techniques to generate the spectral coverage of more than an octave in the MIR, assisted by emerging novel crystals. The nonlinear light-matter interactions in such special crystals as ZnSe ceramics have not been analyzed. Additionally, through the use of high-intensity few-cycle optical pulses, high-order nonlinear …


High Spectral Brightness, Broad Area Quantum Cascade Lasers, Enrique Sanchez Cristobal Dec 2021

High Spectral Brightness, Broad Area Quantum Cascade Lasers, Enrique Sanchez Cristobal

Electronic Theses and Dissertations, 2020-

Quantum cascade lasers are unipolar semiconductor lasers that offer a unique combination of compact size, high efficiency, high optical power, and flexibility to achieve a targeted emission wavelength with the same laser core material composition, employing so-called bandgap engineering. Since their invention in 1994, watt-level CW power with 5 to 20 % wallplug efficiency was demonstrated for QCLs throughout the entire 4 to 12 µm range, which makes QCLs very attractive for a number of practical applications. Our earlier work on broad-area QCLs emitting in the 4.6 µm to 5.7 µm spectral range demonstrated that CW power scaling with lateral …


Spectral Dependence Of Deep Subwavelength Metallic Apertures In The Mid-Wave Infrared, Heath Gemar Dec 2021

Spectral Dependence Of Deep Subwavelength Metallic Apertures In The Mid-Wave Infrared, Heath Gemar

Electronic Theses and Dissertations, 2020-

For two decades, extraordinary optical transmission (EOT) has amplified exploration into subwavelength systems. Researchers have previously suggested exploiting the spectrally selective electromagnetic field confinement of subwavelength cavities for multispectral detectors. Utilizing the finite-difference frequency domain (FDFD) method, we examine electromagnetic field confinement in both 2-dimensional and 3-dimensional scenarios from 2.5 to 6 microns (i.e., mid-wave infrared or MWIR). We explore the trade space of deep subwavelength cavities and its impact on resonant enhancement of the electromagnetic field. The studies provide fundamental understanding of the coupling mechanisms allowing for prediction of resonant spectral behavior based on cavity geometry and material properties. …


Novel Optical Frequency Combs Injection Locking Architectures, Ricardo Bustos Ramirez May 2021

Novel Optical Frequency Combs Injection Locking Architectures, Ricardo Bustos Ramirez

Electronic Theses and Dissertations, 2020-

Due to their highly stable timing characteristics, optical frequency combs have become instrumental in applications ranging from spectroscopy to ultra-wideband optical interconnects, high-speed signal processing, and exoplanet search. In the past few years, there has been a necessity for frequency combs to become more compact, robust to environmental disturbances, and extremely energy efficient, where photonic integration shows a clear pathway to bring optical frequency combs to satellites, airships, drones, cars, and even smartphones. Therefore, the development of chip-scale optical frequency combs has become a topic of high interest in the optics community. This dissertation reviews the work made in the …


The Physics Of Nanoaperture Optical Traps: Design, Fabrication And Experimentation, Chenyi Zhang May 2021

The Physics Of Nanoaperture Optical Traps: Design, Fabrication And Experimentation, Chenyi Zhang

Electronic Theses and Dissertations, 2020-

Recent progress in nano optics, spurred by progress in nanofabrication, has allowed us to overcome these challenges. We use surface plasmon polaritons to break the optical diffraction limit and squeeze the photon energy into a local hot spot. The small mode volume of a plasmonic antenna or nanoaperature significantly enhances the local field and can be designed to resonate at a desired wavelength. By designing, fabricating, and testing these nanoapertures, I trap single nanoparticles with significantly reduced laser power by measuring the monochromatic transmission change of a resonant aperture. A freely diffused nanoparticle, behaving like a dipole antenna, interacts with …


Development Of Quantitative Intensity-Based Single-Molecule Assays, Benjamin Croop Jan 2021

Development Of Quantitative Intensity-Based Single-Molecule Assays, Benjamin Croop

Electronic Theses and Dissertations, 2020-

Fluorescence microscopy has emerged as a popular and powerful tool within biology research, owing to its exceptional signal contrast, specificity, and the versatility of the various microscope designs. Fluorescence microscopy has been used to study samples across orders of magnitude in physical scale ranging from tissues to cells, down to single-molecules, and as such has led to breakthroughs and new knowledge in a wide variety of research areas. In particular, single-molecule techniques are somewhat unique in their ability to study biomolecules in their native state, which enables the visualization of short-lived interactions and rare events which can be highly relevant …


Directional Link Management Using In-Band Full-Duplex Free Space Optical Transceivers For Aerial Nodes, A F M Saniul Haq Jan 2021

Directional Link Management Using In-Band Full-Duplex Free Space Optical Transceivers For Aerial Nodes, A F M Saniul Haq

Electronic Theses and Dissertations, 2020-

Free-space optical (FSO) communication has become very popular for wireless applications to complement and, in some cases, replace legacy radio-frequency for advantages like unlicensed band, spatial reuse, and enhanced security. Even though FSO can achieve very high bit-rate (tens of Gbps), range limitation due to high attenuation and weather dependency has always restricted its practical implementation to indoor application like data centers and outdoor application like Project Loon. Building-to-building communication, smart cars, and airborne drones are potential futuristic wireless communication sectors for mobile ad-hoc FSO networking. Increasing social media usage demands high-speed mobile connectivity for applications like video call and …


Multi-Functional Fluorescence Microscopy Via Psf Engineering For High-Throughput Super-Resolution Imaging, Jinhan Ren Jan 2021

Multi-Functional Fluorescence Microscopy Via Psf Engineering For High-Throughput Super-Resolution Imaging, Jinhan Ren

Electronic Theses and Dissertations, 2020-

Image-based single cell analysis is essential to study gene expression levels and subcellular functions with preserving the native spatial locations of biomolecules. However, its low throughput has prevented its wide use to fundamental biology and biomedical applications which require large cellular populations in a rapid and efficient fashion. Here, we report a 2.5D microcopy (2.5DM) that significantly improves the image acquisition rate while maintaining high-resolution and single molecule sensitivity. Unlike serial z-scanning in conventional approaches, volumetric information is simultaneously projected onto a 2D image plane in a single shot by engineering the fluorescence light using a novel phase pattern. The …


Measurement And Mitigation Of Optical, Recombination And Resistive Losses In Silicon Photovoltaics, Mohammad Jobayer Hossain Jan 2021

Measurement And Mitigation Of Optical, Recombination And Resistive Losses In Silicon Photovoltaics, Mohammad Jobayer Hossain

Electronic Theses and Dissertations, 2020-

Today, most of the photovoltaic cells in the market are made of silicon. Great achievements are being attained every year in terms of reducing the price of this kind of cells and improving their efficiency, reliability and durability. However, further improving the cell performance is a challenging task because of the presence of optical, recombination and resistive loss mechanisms in the cell. This work is focused on the measurement and mitigation of these losses. Mitigation of the optical, recombination and resistive losses at first require quantifying those losses and their impacts on the cell performance metrics accurately. Traditionally, solar cells …


On The Information Content In Unresolved Imaging, Zhean Shen Jan 2021

On The Information Content In Unresolved Imaging, Zhean Shen

Electronic Theses and Dissertations, 2020-

Imaging is almost synonymous with optics. Imaging is the process of using light to form a tangible or visible representation, an imitation (imitari) of a material property. There are many situations, however, where one can only aspire to 'sense making' rather than forming an image per se. In other words, objects cannot be directly resolved by conventional intensity-based imaging, a situation commonly referred to as 'unresolved imaging'. However, there is still information retained in other properties of light, which can be exposed by other means. In this thesis I will discuss two typical situations: subwavelength and multiple scattering, which are …


High Speed Modulation Characteristics Of Semiconductor Nanolasers And Coupled Ring Laser Systems, Chi Xu Jan 2021

High Speed Modulation Characteristics Of Semiconductor Nanolasers And Coupled Ring Laser Systems, Chi Xu

Electronic Theses and Dissertations, 2020-

Optical communication systems require light sources that can be modulated with high speeds. However, the modulation bandwidth of laser diodes is typically limited by an intrinsic value, its relaxation resonance frequency. In order to circumvent this limitation, a number of methods have been proposed to boost the modulation speed, including optical injection locking, quantum dots lasers with large differential gain, push-pull modulation in composite lasers. This dissertation explores two new approaches for enhancing the direct modulation bandwidth of semiconductor quantum well laser diodes. Lasers with strong spontaneous emission have been shown to exhibit a high-speed performance theoretically. It is expected …


Liquid Crystal Flat Optics For Near-Eye Displays, Tao Zhan Jan 2021

Liquid Crystal Flat Optics For Near-Eye Displays, Tao Zhan

Electronic Theses and Dissertations, 2020-

Augmented reality (AR) and virtual reality (VR) displays, considered as the next-generation information platform, have shown great potential to revolutionize the way how we interact with each other and the digital world. Both AR and VR are disruptive technologies that can enable numerous applications in education, healthcare, design, training, entertainment, and engineering. Among all the building blocks of these emerging devices, near-eye displays (NEDs) play a critical role in the entire system, through which we can perceive the virtual world as the real one. However, the visual experience offered by existing NED technologies is still far from satisfying the human …