Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Optics

Old Dominion University

Spectroscopic ellipsometry

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Growth Analysis Of (Ag,Cu)Inse2 Thin Films Via Real Time Spectroscopic Ellipsometry, S. A. Little, V. Ranjan, R. W. Collins, S. Marsillac Jan 2012

Growth Analysis Of (Ag,Cu)Inse2 Thin Films Via Real Time Spectroscopic Ellipsometry, S. A. Little, V. Ranjan, R. W. Collins, S. Marsillac

Electrical & Computer Engineering Faculty Publications

In situ and ex situ characterization methods have been applied to investigate the properties of (Ag,Cu)InSe2 (ACIS) thin films. Data acquired from real time spectroscopic ellipsometry (RTSE) experiments were analyzed to extract the evolution of the nucleating, bulk, and surface roughness layer thicknesses. The evolution of these layer thicknesses suggests a transition from Volmer-Weber to Stranski-Krastanov type behavior when Cu is replaced by Ag. The complex dielectric functions of ACIS at both deposition and room temperature as a function of film composition were also extracted from the RTSE data, enabling parameterization of the alloy optical properties.


Optical Detection Of Melting Point Depression For Silver Nanoparticles Via In Situ Real Time Spectroscopic Ellipsometry, S. A. Little, T. Begou, R. W. Collins, S. Marsillac Jan 2012

Optical Detection Of Melting Point Depression For Silver Nanoparticles Via In Situ Real Time Spectroscopic Ellipsometry, S. A. Little, T. Begou, R. W. Collins, S. Marsillac

Electrical & Computer Engineering Faculty Publications

Silver nanoparticle films were deposited by sputtering at room temperature and were annealed while monitoring by real time spectroscopic ellipsometry (SE). The nanoparticle dielectric functions (0.75 eV-6.5 eV) obtained by SE were modeled using Lorentz and generalized oscillators for the nanoparticle plasmon polariton (NPP) and interband transitions, respectively. The nanoparticle melting point could be identified from variations in the oscillator parameters during annealing, and this identification was further confirmed after cooling through significant, irreversible changes in these parameters relative to the as-deposited film. The variation in melting point with physical thickness, and thus average nanoparticle diameter, as measured by SE …


Electronic And Structural Properties Of Molybdenum Thin Films As Determined By Real Time Spectroscopic Ellipsometry, J. D. Walker, H. Khatri, V. Ranjan, Jian Li, R. W. Collins, S. Marsillac Jan 2009

Electronic And Structural Properties Of Molybdenum Thin Films As Determined By Real Time Spectroscopic Ellipsometry, J. D. Walker, H. Khatri, V. Ranjan, Jian Li, R. W. Collins, S. Marsillac

Electrical & Computer Engineering Faculty Publications

Walker, J.D., Khatri, H., Ranjan, V., Li, J., Collins, R.W., & Marsillac, S. (2009). Electronic and structural properties of molybdenum thin films as determined by real-time spectroscopic ellipsometry. Applied Physics Letters, 94(14). doi: 10.1063/1.3117222