Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Optics

PDF

Old Dominion University

Photonic crystal fibers

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Loss And Dispersion Analysis Of Microstructured Fibers By Finite-Difference Method, Shangping Guo, Feng Wu, Sacharia Albin, Hsiang Tai, Robert S. Rogowski Jan 2004

Loss And Dispersion Analysis Of Microstructured Fibers By Finite-Difference Method, Shangping Guo, Feng Wu, Sacharia Albin, Hsiang Tai, Robert S. Rogowski

Electrical & Computer Engineering Faculty Publications

The dispersion and loss in microstructured fibers are studied using a full-vectorial compact-2D finite-difference method in frequency-domain. This method solves a standard eigen-value problem from the Maxwell’s equations directly and obtains complex propagation constants of the modes using anisotropic perfectly matched layers. A dielectric constant averaging technique using Ampere’s law across the curved media interface is presented. Both the real and the imaginary parts of the complex propagation constant can be obtained with a high accuracy and fast convergence. Material loss, dispersion and spurious modes are also discussed.


Simple Plane Wave Implementation For Photonic Crystal Calculations, Shangping Guo, Sacharia Albin Jan 2003

Simple Plane Wave Implementation For Photonic Crystal Calculations, Shangping Guo, Sacharia Albin

Electrical & Computer Engineering Faculty Publications

A simple implementation of plane wave method is presented for modeling photonic crystals with arbitrary shaped ‘atoms’. The Fourier transform for a single ‘atom’ is first calculated either by analytical Fourier transform or numerical FFT, then the shift property is used to obtain the Fourier transform for any arbitrary supercell consisting of a finite number of ‘atoms’. To ensure accurate results, generally, two iterating processes including the plane wave iteration and grid resolution iteration must converge. Analysis shows that using analytical Fourier transform when available can improve accuracy and avoid the grid resolution iteration. It converges to the accurate results …