Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Raman-Scatter Lidar Measurements Of Water Vapor Determined Using An Integrated Microwave Radiometer-Lidar Retrieval, Jeffrey Vankerkhove Dec 2019

Raman-Scatter Lidar Measurements Of Water Vapor Determined Using An Integrated Microwave Radiometer-Lidar Retrieval, Jeffrey Vankerkhove

Electronic Thesis and Dissertation Repository

Water vapor plays a crucially important role in many atmospheric processes. However, it is poorly characterized in much of the atmosphere. Vibrational Raman-scattering Lidar has excellent spatial and temporal resolution, but requires an external calibration to correct for instrumental biases. Microwave Radiometers have poorer resolution, but can be calibrated absolutely and can be used to calibrate the Lidar system. I have implemented a new technique, incorporating both instruments to generate a calibrated water vapor mixing ratio profile. This integrated retrieval uses an inverse method which includes a combined forward model, integrating radiative transfer equations (Schroeder and Westwater 1991) and lidar …


Comparative Assessment Of Downscaling Methods And Application Towards Analysis Of Climate Change Impact On Urban Regions, Markus Eichenbaum Nov 2019

Comparative Assessment Of Downscaling Methods And Application Towards Analysis Of Climate Change Impact On Urban Regions, Markus Eichenbaum

Electronic Thesis and Dissertation Repository

Global climate models (GCM) are sophisticated numerical models used to make long term climate projections. However, the resolution of their output is too coarse for climate change related local impact studies on urban regional scales. Downscaling efforts are taken to address this and increase GCM projection resolution. Physical Scaling (SP) downscaling methodology attempts to incorporate the physical basis of dynamical downscaling efforts with the computational efficiency of statistical methods. In this study, North American Regional Reanalysis surface skin temperature and precipitation data for a 1°x1° region centered on Houston, TX are downscaled to a resolution of 500m via SP and …


The Stability Of Temperate Lakes Under The Changing Climate, Aleksey Paltsev Sep 2019

The Stability Of Temperate Lakes Under The Changing Climate, Aleksey Paltsev

Electronic Thesis and Dissertation Repository

There is a collective prediction among ecologists that climate change will enhance phytoplankton biomass in temperate lakes. Yet there is noteworthy variation in the structure and regulating functions of lakes to make this statement challengeable and, perhaps, inaccurate. To generate a common understanding on the trophic transition of lakes, I examined the interactive effects of climate change and landscape properties on phytoplankton biomass in 12,644 lakes located in relatively intact forested landscapes. Chlorophyll-a (Chl-a) concentration was used as a proxy for phytoplankton biomass. Chl-a concentration was obtained via analyzing Landsat satellite imagery data over a 28-year period (1984-2011) and using …


A Tropospheric Water Vapour Climatology And Trends Derived From Vibrational Raman Lidar Measurements Over Switzerland, Shannon Hicks-Jalali Jul 2019

A Tropospheric Water Vapour Climatology And Trends Derived From Vibrational Raman Lidar Measurements Over Switzerland, Shannon Hicks-Jalali

Electronic Thesis and Dissertation Repository

Water vapour is the most effective atmospheric greenhouse gas in terms of warming the atmosphere. Water vapour can magnify the temperature increase that CO2 would cause alone by 2-3 times. As such, it is critical to monitor changes in water vapour abundance to better understand its role in atmospheric change. I have used 10 years of lidar and radiosonde measurements from the MeteoSwiss research station in Payerne, Switzerland to calibrate the lidar, improve its water vapour retrievals, and finally calculate a lidar water vapour climatology and trend analysis.

Calculating trends with a lidar requires rigorous calibration. Therefore, my first …


Development Of A 1-Dimensional Data Assimilation To Determine Temperature And Relative Humidity Combining Raman Lidar Backscatter Measurements And A Reanalysis Model, Shayamila N. Mahagammulla Gamage Jul 2019

Development Of A 1-Dimensional Data Assimilation To Determine Temperature And Relative Humidity Combining Raman Lidar Backscatter Measurements And A Reanalysis Model, Shayamila N. Mahagammulla Gamage

Electronic Thesis and Dissertation Repository

Water vapor is the most dominant greenhouse gas in Earth's atmosphere. It is highly variable and its variations strongly depend on changes in temperature. Atmospheric water vapor can be expressed as relative humidity (RH), the ratio of the partial pressure of water vapor in the mixture to the equilibrium vapor pressure of water over a flat surface of pure water at a given temperature. Liquid water can exist as super-cooled water for temperatures between 0C to -38C. Thus, RH can be measured either relative to water (RHw) or to ice (RHi). RHi measurements are important in the upper tropospheric region, …