Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 21 of 21

Full-Text Articles in Physical Sciences and Mathematics

An Analysis Of The Atmospheric Propagation Of Underground-Explosion-Generated Infrasonic Waves Based On The Equations Of Fluid Dynamics: Ground Recordings, Roberto Sabatini, Jonathan B. Snively, Michael P. Hickey, J. L. Garrison Dec 2019

An Analysis Of The Atmospheric Propagation Of Underground-Explosion-Generated Infrasonic Waves Based On The Equations Of Fluid Dynamics: Ground Recordings, Roberto Sabatini, Jonathan B. Snively, Michael P. Hickey, J. L. Garrison

Publications

An investigation on the propagation of underground-explosion-generated infrasonic waves is carried out via numerical simulations of the equations of fluid dynamics. More specifically, the continuity, momentum, and energy conservation equations are solved along with the Herzfeld-Rice equations in order to take into account the effects of vibrational relaxation phenomena. The radiation of acoustic energy by the ground motion caused by underground explosions is initiated by enforcing the equality, at ground level, between the component of the air velocity normal to the Earth's surface and the normal velocity of the ground layer. The velocity of the ground layer is defined semi-empirically …


Steve And The Picket Fence: Evidence Of Feedback-Unstable Magnetosphere-Ionosphere Interaction, Evgeny Mishin, Anatoly Streltsov Dec 2019

Steve And The Picket Fence: Evidence Of Feedback-Unstable Magnetosphere-Ionosphere Interaction, Evgeny Mishin, Anatoly Streltsov

Publications

This paper aims to extend the understanding of Strong Thermal Emission VelocityEnhancement (STEVE) and the Picket Fence related to strong subauroral ion drifts (SAID). Wenumerically demonstrated that precipitating energetic electrons are critical for the structuring of the PicketFence. It is created by feedback-unstable magnetosphere-ionosphere interactions driven by the SAIDelectric field when the Hall conductance created by energetic (≥1 keV) electrons exceeds the Pedersenconductance. We show that thermal excitation of the red-line emission in STEVE is inhibited by inelasticcollisions with molecular nitrogen. Suprathermal (≤500 eV) electrons coming from the turbulentplasmasphere appear to be the major source. We also show that the …


Multilayer Observations And Modeling Of Thunderstorm-Generated Gravity Waves Over The Midwestern United States, C. J. Heale, J. B. Snively, A. N. Bhatt, L. Hoffmann, C. C. Stephan Dec 2019

Multilayer Observations And Modeling Of Thunderstorm-Generated Gravity Waves Over The Midwestern United States, C. J. Heale, J. B. Snively, A. N. Bhatt, L. Hoffmann, C. C. Stephan

Publications

We present multilayer observations and numerical simulations of gravity waves (GWs) generated by a series of Mesoscale Convective Systems over the midwestern United States. Strong semiconcentric GWs were observed and modeled, which couple from their tropospheric sources to the thermosphere, displaying strong nonlinearity indicated by instability, breaking, and formation of turbulent vortices. GWs in the stratosphere display a large range of horizontal scales from 34–400 km; however, the smaller wavelength waves break rapidly in the mesosphere and lower thermosphere. Larger-scale (≥150 km) waves dominate in the thermosphere and display northwestward propagation at 200–300 km altitude, opposing the mean winds. Despite …


Comparison Between Fluid Simulation With Test Particles And 1 Hybrid Simulation For The Kelvin-Helmholtz Instability, Xuanye Ma, Katariina Nykyri, Brandon L. Burkholder, Rachel C. Rice, Peter A. Delamere, Bishwa Neupane Aug 2019

Comparison Between Fluid Simulation With Test Particles And 1 Hybrid Simulation For The Kelvin-Helmholtz Instability, Xuanye Ma, Katariina Nykyri, Brandon L. Burkholder, Rachel C. Rice, Peter A. Delamere, Bishwa Neupane

Publications

A quantitative investigation of plasma transport rate via the Kelvin‐Helmholtz (KH) instability can improve our understanding of solar‐wind‐magnetosphere coupling processes. Simulation studies provide a broad range of transport rates by using different measurements based on different initial conditions and under different plasma descriptions, which makes cross literature comparison difficult. In this study, the KH instability under similar initial and boundary conditions (i.e., applicable to the Earth's magnetopause environment) is simulated by Hall magnetohydrodynamics with test particles and hybrid simulations. Both simulations give similar particle mixing rates. However, plasma is mainly transported through a few big magnetic islands caused by KH‐driven …


Aviation Weather Products In General Aviation : Interpretability And Usability Research Trends, Jacqueline Mcsorley, Jayde King, Beth Blickensderfer Jul 2019

Aviation Weather Products In General Aviation : Interpretability And Usability Research Trends, Jacqueline Mcsorley, Jayde King, Beth Blickensderfer

General Aviation Weather Display Interpretation

  • Introduction
  • Current Study
  • Trends
  • Summary
  • Conclusion


Parameterizing Wave‐Driven Vertical Constituent Transport In The Upper Atmosphere, Alan Z. Liu, Chester S. Gardner, Yafang Guo Jun 2019

Parameterizing Wave‐Driven Vertical Constituent Transport In The Upper Atmosphere, Alan Z. Liu, Chester S. Gardner, Yafang Guo

Publications

Dissipating waves contribute to vertical mixing of the atmosphere, alter molecular and eddy diffusion, and induce chemical transport of reactive species. These processes induce strong vertical transport of atmospheric constituents in regions where wave dissipation is significant. The effective wave diffusivity is proportional to the Stokes drift velocity imparted by the spectrum of vertically propagating waves, which is related to the vertical heat and wave energy fluxes. Because the heat flux cannot be derived from wave parameterization schemes employed in most atmospheric models, wave‐driven constituent transport has not been fully incorporated. However, we show in this paper that wave diffusivity …


Effects Of The Hall Conductivity In Ionospheric Heating Experiments, B. Tulegenov, A. V. Streltsov May 2019

Effects Of The Hall Conductivity In Ionospheric Heating Experiments, B. Tulegenov, A. V. Streltsov

Publications

We investigate the role of Hall conductivity in ionospheric heating experiments. Ionosphericheating by powerful X-mode waves changes the Hall and Pedersen conductances in theEandDregions,which lead to the generation of ultra-low frequency (ULF)/extremely-low frequency/very low frequencywaves, when the electric field exists in the ionosphere. The importance of the Hall currents in themagnetosphere-ionosphere interactions, carried by ULF waves and field-aligned currents, has beenconsistently overlooked in studies devoted tothe active experiments. Simulations of the three-dimensionaltwo-fluid magnetohydrodynamic (MHD) model, presented in this paper, demonstrate that the Hallconductivity changes (1) the growth rate and the amplitude of ULF waves generated by the heating and (2)the …


Exploring Perceived Usability And Interpretability Of Aviation Weather Products Among Ga Pilots, Jackie Mcsorley, Jayde King, Beth Blickensderfer May 2019

Exploring Perceived Usability And Interpretability Of Aviation Weather Products Among Ga Pilots, Jackie Mcsorley, Jayde King, Beth Blickensderfer

General Aviation Weather Display Interpretation

  • Introduction
  • Results
  • Discussion
  • Current Investigations


Induced Magnetic Dipole On Jupiter’S Moon Europa, Luke Francis, Michele Zanolin Apr 2019

Induced Magnetic Dipole On Jupiter’S Moon Europa, Luke Francis, Michele Zanolin

Student Works

Physics can have some of the most unique and extraordinary applications of basic principles applied on a larger scale. This paper will explore the properties of induced magnetic dipoles and will examine this phenomenon directly from Jupiter's moon, Europa. These properties will be used to determine if there is liquid water beneath its icy surface and how this conclusion was verified. This will be accomplished using the concepts of magnetic dipoles and induced currents. Recent missions have also revealed estimates of the depth of Europa's subsurface ocean. There have been many measurements taken of Europa's magnetic field, and they are …


Artificial Aurora Produced By Haarp, B. Tulegenov, A. V. Streltsov, E. Kendall, M. Mccarrick, I. Galkin Apr 2019

Artificial Aurora Produced By Haarp, B. Tulegenov, A. V. Streltsov, E. Kendall, M. Mccarrick, I. Galkin

Publications

We present results from the ionospheric heating experiment conducted at the HighFrequency Active Auroral Research Program (HAARP) facility, Alaska, on 12 March 2013. During theexperiment, HAARP transmitted in the direction of the magnetic zenith X-mode 4.57-MHz wave. Thetransmitted power was modulated with the frequency of 0.9 mHz, and it was pointed on a 20-km spot at thealtitude of 120 km. The heating (1) generates disturbances in the magnetic field detected with the fluxgatemagnetometer on the ground and (2) produces bright luminous spots in the ionosphere, observed with theHAARP telescope. Numerical simulations of the 3-D reduced magnetohydrodynamic (MHD) model revealthat these …


Gravity Wave Ducting Observed In The Mesosphere Over Jicamarca, Peru, Gerald A. Lehmacher, Christopher J. Heale, Jonathan B. Snively, Erhan Kudeki, Pablo M. Reyes, Kiwook Lee Apr 2019

Gravity Wave Ducting Observed In The Mesosphere Over Jicamarca, Peru, Gerald A. Lehmacher, Christopher J. Heale, Jonathan B. Snively, Erhan Kudeki, Pablo M. Reyes, Kiwook Lee

Publications

Short-period gravity waves are ubiquitous in the mesosphere, but the vertical structures of their perturbations are difficult to observe. The Jicamarca 50-MHz very high frequency radar allows observations of winds and turbulent scatter with high temporal and vertical resolution. We present a case of a quasi-monochromatic gravity wave with period 520 (±40) s that is likely ducted below a southward wind jet between 68 and 74 km. Above this layer of evanescence, a northward wind enables it to emerge into a more stable layer, where it is refracted to a short vertical wavelength of 2.2 (±0.2) km; data show evidence …


Numerical Modeling Of The Propagation Of Infrasonic Acoustic Waves Through The Turbulent Field Generated By The Breaking Of Mountain Gravity Waves, Michael P. Hickey, Jonathan Snively, C Bailly, J. L. Garrison Apr 2019

Numerical Modeling Of The Propagation Of Infrasonic Acoustic Waves Through The Turbulent Field Generated By The Breaking Of Mountain Gravity Waves, Michael P. Hickey, Jonathan Snively, C Bailly, J. L. Garrison

Publications

The nonlinear propagation of low-frequency acoustic waves through the turbulent fluctuations induced by breaking mountain gravity waves is investigated via 2-D numerical simulations of the Navier-Stokes equations, to understand the effects of atmospheric dynamics on ground-based infrasound measurements. Emphasis is placed on acoustic signals of frequency around 0.1 Hz, traveling through tens-of-kilometers-scale gravity waves and subkilometer-scale turbulence. The sensitivity of the infrasonic phases to small-scale fluctuations is found to depend on the altitudes through which they are refracted toward the Earth. For the considered cases, the dynamics in the stratosphere impact the refracting acoustic waves to a greater extent than …


Efficacy Of The Localized Aviation Mos Program In Ceiling Flight Category Forecasts, Douglas D. Boyd, Thomas A. Guinn, Thomas A. Guinn Mar 2019

Efficacy Of The Localized Aviation Mos Program In Ceiling Flight Category Forecasts, Douglas D. Boyd, Thomas A. Guinn, Thomas A. Guinn

Publications

(1) Background: Flying in instrument meteorological conditions (IMC) carries an elevated risk of fatal outcome for general aviation (GA) pilots. For the typical GA flight, aerodrome-specific forecasts (Terminal Aerodrome Forecast (TAF), Localized Aviation Model Output Statistics Program (LAMP)) assist the airman in pre-determining whether a flight can be safely undertaken. While LAMP forecasts are more prevalent at GA-frequented aerodromes, the Federal Aviation Administration (FAA) recommends that this tool be used as supplementary to the TAF only. Herein, the predictive accuracy of LAMP for ceiling flight categories of visual flight rules (VFR) and instrument flight rules (IFR) was determined. (2) Methods: …


Combined Report: Aviation Weather Knowledge Assessment & General Aviation (Ga) Pilots’ Interpretation Of Weather Products, Beth Blickensderfer, John Lanicci, Thomas A. Guinn, Robert Thomas, Jennifer E. Thropp, Jayde King, Yolanda Ortiz, Jessica Cruit, Nicholas Defilippis, Krijn Berendschot, Jacqueline Mcsorley, John Kleber Feb 2019

Combined Report: Aviation Weather Knowledge Assessment & General Aviation (Ga) Pilots’ Interpretation Of Weather Products, Beth Blickensderfer, John Lanicci, Thomas A. Guinn, Robert Thomas, Jennifer E. Thropp, Jayde King, Yolanda Ortiz, Jessica Cruit, Nicholas Defilippis, Krijn Berendschot, Jacqueline Mcsorley, John Kleber

General Aviation Weather Display Interpretation

Prior research has indicated that general aviation (GA) pilots may lack adequate knowledge of aviation weather concepts and skill at interpreting aviation weather displays. Therefore, the purpose of the current project was to develop and validate a comprehensive set of aviation weather knowledge and interpretation multiple-choice questions, and in turn, to use the questions to assess pilot understanding of aviation weather concepts and displays. An interdisciplinary research team that included two meteorologists, one Gold Seal Certificated Flight Instructor (CFI), a human factors psychologist, and several human factors graduate students performed this research.


Application Of A Hybrid Statistical–Dynamical System To Seasonal Prediction Of North American Temperature And Precipitation, Sarah Strazzo, Dan C. Collins, Andrew Schepen, Q. J. Wang, Emily Becker, Liweli Jia Feb 2019

Application Of A Hybrid Statistical–Dynamical System To Seasonal Prediction Of North American Temperature And Precipitation, Sarah Strazzo, Dan C. Collins, Andrew Schepen, Q. J. Wang, Emily Becker, Liweli Jia

Publications

Recent research demonstrates that dynamical models sometimes fail to represent observed teleconnection patterns associated with predictable modes of climate variability. As a result, model forecast skill may be reduced. We address this gap in skill through the application of a Bayesian postprocessing technique—the calibration, bridging, and merging (CBaM) method—which previously has been shown to improve probabilistic seasonal forecast skill over Australia. Calibration models developed from dynamical model reforecasts and observations are employed to statistically correct dynamical model forecasts. Bridging models use dynamical model forecasts of relevant climate modes (e.g., ENSO) as predictors of remote temperature and precipitation. Bridging and calibration …


Latitude And Longitude Dependence Of Ionospheric Tec And Magnetic Perturbations From Infrasonic-Acoustic Waves Generated By Strong Seismic Events, M. D. Zettergren, J. B. Snively Jan 2019

Latitude And Longitude Dependence Of Ionospheric Tec And Magnetic Perturbations From Infrasonic-Acoustic Waves Generated By Strong Seismic Events, M. D. Zettergren, J. B. Snively

Publications

A numerical study of the effects of seismically generated acoustic waves in the ionosphere is conducted using a three-dimensional (3-D) ionospheric model driven by an axisymmetric neutral atmospheric model. A source consistent with the 2011 Tohoku earthquake initial ocean surface uplifting is applied to simulate the subsequent responses. Perturbations in electron density, ion drift, total electron content (TEC), and ground-level magnetic fields are examined. Results reveal strong latitude and longitude dependence of ionospheric TEC, and of ground-level magnetic field perturbations associated with acoustic wave-driven ionospheric dynamo currents. Results also demonstrate that prior two-dimensional models can capture dominant meridional responses of …


Preflight Weather Worksheet, Embry-Riddle Aeronautical University Jan 2019

Preflight Weather Worksheet, Embry-Riddle Aeronautical University

Weather Training Modules

Preflight Weather Worksheet

  • Big Picture
  • Hazards
  • Visibility


Usability Analysis Of Convective Sigmets, Jackie Mcsorley, Beth Blickensderfer Jan 2019

Usability Analysis Of Convective Sigmets, Jackie Mcsorley, Beth Blickensderfer

General Aviation Weather Display Interpretation

  • Introduction
  • Methods
  • Results

○ Interface Analysis: System Usability Scale

○ Workload Analysis: NASA-TLX

  • Discussion
  • Current Investigations


Aviation Weather Products In General Aviation: Interpretability And Usability Research Trends, Jacqueline Mcsorley, Jayde King, Beth Blickensderfer Jan 2019

Aviation Weather Products In General Aviation: Interpretability And Usability Research Trends, Jacqueline Mcsorley, Jayde King, Beth Blickensderfer

General Aviation Weather Display Interpretation

As a result of advances in weather forecasting and technology, today’s General Aviation (GA) pilots have access to a wealth of aviation weather information. During pre-flight planning, GA pilots may access weather radar images, satellite pictures, winds, and forecast maps. During flight, pilots can access in-cockpit weather displays, as well as, handheld portable weather devices. Despite the increasing advancement and accessibility of weather displays, there is limited research addressing the interpretability of both in-cockpit and preflight weather displays. This is particularly concerning considering that preflight planning and poor product interpretability have been cited as possible contributing factors for GA weather …


Uas Flight Operations In Complex Terrain: Assessing The Agricultural Impact From Hurricane Maria In The Central Mountainous Region Of Puerto Rico, Kevin Adkins Jan 2019

Uas Flight Operations In Complex Terrain: Assessing The Agricultural Impact From Hurricane Maria In The Central Mountainous Region Of Puerto Rico, Kevin Adkins

Publications

Hurricane Maria struck Puerto Rico in September 2017 as a Category 4 storm causing major damage to infrastructure, agriculture and natural ecosystems, as well as the loss of many lives. Among the crops hardest hit was coffee, one of the most important crops in Puerto Rico. As a perennial system, coffee takes various production forms along a gradient from high shade/biodiversity coffee farms to low shade coffee monocultures and therefore offers an ideal means for the study of resistance and resilience of an agroecosystem to weather and climate disturbance. During the summer of 2018, 14 impacted farms across the production …


Vortex: A New Rocketexperiment To Studymesoscale Dynamics At The Turbopause, Gerald A. Lehmacher, Jonathan B. Snively, Aroh Barjatya, Miguel F. Larsen, Michael J. Taylor, Franz-Josef Lübken, Jorge L. Chau Jan 2019

Vortex: A New Rocketexperiment To Studymesoscale Dynamics At The Turbopause, Gerald A. Lehmacher, Jonathan B. Snively, Aroh Barjatya, Miguel F. Larsen, Michael J. Taylor, Franz-Josef Lübken, Jorge L. Chau

Publications

The goal of this new investigation is to better understand gravity waves and their interactions as they propagate from the mesosphere into the lower thermosphere, to characterize the mesoscale wind field, and to identify regions of divergence, vorticity, and stratified turbulence. The Vorticity Experiment (VortEx) will comprise two salvoes of each two sounding rockets scheduled to be launched from Andøya Space Center, Norway in February 2022. The rockets will observe horizontally spaced wind profiles, neutral density and temperature profiles, and plasma densities. Additional information about the background conditions and mesoscale dynamics will be obtained by lidars, meteor radars and a …