Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Physical Sciences and Mathematics

Dynamics Of Density Cavities Generated By Frictional Heating: Formation, Distortion, And Instability, M. D. Zettergren, J. L. Semeter, H. Dahlgren Dec 2015

Dynamics Of Density Cavities Generated By Frictional Heating: Formation, Distortion, And Instability, M. D. Zettergren, J. L. Semeter, H. Dahlgren

Publications

A simulation study of the generation and evolution of mesoscale density cavities in the polar ionosphere is conducted using a time-dependent, nonlinear, quasi-electrostatic model. The model demonstrates that density cavities, generated by frictional heating, can form in as little as 90 s due to strong electric fields of ∼120 mV/m, which are sometimes observed near auroral zone and polar cap arcs. Asymmetric density cavity features and strong plasma density gradients perpendicular to the geomagnetic field are naturally generated as a consequence of the strong convection and finite extent of the auroral feature. The walls of the auroral density cavities are …


Ionospheric Response To Infrasonic-Acoustic Waves Generated By Natural Hazard Events, M. D. Zettergren, J. B. Snively Sep 2015

Ionospheric Response To Infrasonic-Acoustic Waves Generated By Natural Hazard Events, M. D. Zettergren, J. B. Snively

Publications

"Recent measurements of GPS-derived total electron content (TEC) reveal acoustic wave periods of ∼1–4 min in the F region ionosphere following natural hazard events, such as earthquakes, severe weather, and volcanoes. Here we simulate the ionospheric responses to infrasonic-acoustic waves, generated by vertical accelerations at the Earth’s surface or within the lower atmosphere, using a compressible atmospheric dynamics model to perturb a multifluid ionospheric model. Response dependencies on wave source geometry and spectrum are investigated at middle, low, and equatorial latitudes. Results suggest constraints on wave amplitudes that are consistent with observations and that provide insight on the geographical variability …


Self-Accleration And Instability Of Gravity Wave Packets: 1. Effects Of Temporal Localization, David C. Fritts, Brian Laughman, Thomas S. Lund, Jonathan B. Snively Sep 2015

Self-Accleration And Instability Of Gravity Wave Packets: 1. Effects Of Temporal Localization, David C. Fritts, Brian Laughman, Thomas S. Lund, Jonathan B. Snively

Publications

"An anelastic numerical model is used to explore the dynamics accompanying the attainment of large amplitudes by gravity waves (GWs) that are localized in altitude and time. GW momentum transport induces mean flow variations accompanying a GW packet that grows exponentially with altitude, is localized in altitude, and induces significant GW phase speed, and phase, variations across the GW packet. These variations arise because the GW occupies the region undergoing accelerations, with the induced phase speed variations referred to as “self-acceleration.” Results presented here reveal that self-acceleration of a GW packet localized in time and altitude ultimately leads to stalling …


The Life Cycle Of Instability Features Measured From The Andes Lidar Observatory Over Cerro Pachon On 24 March 2012, J. H. Hecht, K. Wan, Lynette Gelinas, David Fritts, R. L. Walterscheid, R. J. Rudy, Alan Liu, Steven J. Franke, Fabio Vargas, P. -D. Pautet, Michael Taylor, Gary Swenson, Jul 2015

The Life Cycle Of Instability Features Measured From The Andes Lidar Observatory Over Cerro Pachon On 24 March 2012, J. H. Hecht, K. Wan, Lynette Gelinas, David Fritts, R. L. Walterscheid, R. J. Rudy, Alan Liu, Steven J. Franke, Fabio Vargas, P. -D. Pautet, Michael Taylor, Gary Swenson,

Publications

The Aerospace Corporation's Nightglow Imager (ANI) observes nighttime OH emission (near 1.6 µm) every 2 s over an approximate 73¬∞ field of view. ANI had previously been used to study instability features seen over Maui. Here we describe observations of instabilities seen from 5 to 8 UT on 24 March 2012 over Cerro Pachon, Chile, and compare them with previous results from Maui, with theory, and with Direct Numerical Simulations (DNS). The atmosphere had reduced stability because of the large negative temperature gradients measured by a Na lidar. Thus, regions of dynamical and convective instabilities are expected to form, depending …


A Meteorological Analysis Of The 2013 Alberta Flood: Antecendent Large-Scale Flow Pattern And Synoptic-Dynamic Characteristics, Shawn M. Milrad, John R. Gyakum, Eyad H. Atallah Jul 2015

A Meteorological Analysis Of The 2013 Alberta Flood: Antecendent Large-Scale Flow Pattern And Synoptic-Dynamic Characteristics, Shawn M. Milrad, John R. Gyakum, Eyad H. Atallah

Publications

The 19–21 June 2013 Alberta flood was the costliest (CAD $6 billion) natural disaster in Canadian history. The flood was caused by a combination of above-normal spring snowmelt in the Canadian Rockies, large antecedent precipitation, and an extreme rainfall event on 19–21 June that produced rainfall totals of 76 mm in Calgary and 91 mm in the foothills. As is typical of flash floods along the Front Range of the Rocky Mountains, rapidly rising streamflow proceeded to move downhill (eastward) into Calgary.

A meteorological analysis traces an antecedent Rossby wave train across the North Pacific Ocean, starting with intense baroclinic …


Gravity Wave Propagation Through A Vertically And Horizontally Inhomogeneous Background Wind, C. J. Heale, J. B. Snively Jun 2015

Gravity Wave Propagation Through A Vertically And Horizontally Inhomogeneous Background Wind, C. J. Heale, J. B. Snively

Publications

"A combination of ray theory and 2-D time-dependent simulations is used to investigate the linear effects of a time-dependent, vertically, and horizontally inhomogeneous background horizontal wind field on the propagation, refraction, and reflection of small-scale gravity wave packets. Interactions between propagating waves of different scales are likely to be numerous and important. We find that a static medium-scale wave wind field of sufficient amplitude can channel and/or critical-level filter a small-scale wave or cause significant reflection, depending upon both waves' parameters. However, the inclusion of a time-dependent phase progression of the medium-scale wave can reduce energy loss through critical-level filtering …


Hurricanes And Climate The U.S. Clivar Working Group On Hurricanes, Kevin J.E. Walsh, Suzana J. Camargo, Gabriel A. Vecchi, Anne Sophie Daloz, James Elsner, Kerry Emanuel, Michael Horn, Young-Kwon Lim, Malcom Roberts, Christina Patricola, Enrico Scoccimarro, Adam H. Sobel, Sarah Strazzo, Gabrielle Villarini, Michael Wehner, Ming Zhao, James P. Kossin, Tim Larow, Kazuyoshi Oouchi, Sigfried Schubert, Hui Wang, Julio Bacmeister, Ping Chang, Fabrice Chauvin, Christiane Jablonowski, Arun Kumar, Hiroyuki Murakami, Tomoaki Ose, Kevin A. Reed, Ramalingam Saravanan, Yohei Yamada, Colin M. Zarzycki, Pier Luigi Vidale, Jefferey A. Jonas, Naomi Henderson Jun 2015

Hurricanes And Climate The U.S. Clivar Working Group On Hurricanes, Kevin J.E. Walsh, Suzana J. Camargo, Gabriel A. Vecchi, Anne Sophie Daloz, James Elsner, Kerry Emanuel, Michael Horn, Young-Kwon Lim, Malcom Roberts, Christina Patricola, Enrico Scoccimarro, Adam H. Sobel, Sarah Strazzo, Gabrielle Villarini, Michael Wehner, Ming Zhao, James P. Kossin, Tim Larow, Kazuyoshi Oouchi, Sigfried Schubert, Hui Wang, Julio Bacmeister, Ping Chang, Fabrice Chauvin, Christiane Jablonowski, Arun Kumar, Hiroyuki Murakami, Tomoaki Ose, Kevin A. Reed, Ramalingam Saravanan, Yohei Yamada, Colin M. Zarzycki, Pier Luigi Vidale, Jefferey A. Jonas, Naomi Henderson

Publications

While a quantitative climate theory of tropical cyclone formation remains elusive, considerable progress has been made recently in our ability to simulate tropical cyclone climatologies and to understand the relationship between climate and tropical cyclone formation. Climate models are now able to simulate a realistic rate of global tropical cyclone formation, although simulation of the Atlantic tropical cyclone climatology remains challenging unless horizontal resolutions finer than 50 km are employed. This article summarizes published research from the idealized experiments of the Hurricane Working Group of U.S. Climate and Ocean: Variability, Predictability and Change (CLIVAR). This work, combined with results from …


Lower Thermospheric Response To Atmospheric Gravity Waves Induced By The 2011 Tohoku Tsunami, Yonghui Yu, Zhiyu Yan, Michael P. Hickey Ph.D. May 2015

Lower Thermospheric Response To Atmospheric Gravity Waves Induced By The 2011 Tohoku Tsunami, Yonghui Yu, Zhiyu Yan, Michael P. Hickey Ph.D.

Publications

Previous GPS observations have revealed that while ionospheric TIDs were seen propagating in all directions away from the 2011 Tohoku earthquake epicenter, the total electron content (TEC) fluctuations associated with the subsequent tsunami were largest for waves propagating toward the northwest of the epicenter. Ionospheric motions observed approximately 10min after the earthquake were attributed to fast acoustic waves directly produced by the earthquake. Waves that first appeared about 40 min after the tsunami onset in TEC measurements were attributed to atmospheric gravity waves. In this paper, we conjecture that the remarkably different responses observed for the eastward and westward propagating …


Quantifying The Sensitivity Of Maximum, Limiting, And Potential Tropical Cyclone Intensity To Sst: Observations Versus The Fsu/ Coaps Global Climate Model, Sarah Strazzo, James Elsner, Tim Larow Apr 2015

Quantifying The Sensitivity Of Maximum, Limiting, And Potential Tropical Cyclone Intensity To Sst: Observations Versus The Fsu/ Coaps Global Climate Model, Sarah Strazzo, James Elsner, Tim Larow

Publications

No abstract provided.


A Full-Wave Model For A Binary Gas Thermosphere: Effects Of Thermal Conductivity And Viscosity, Michael P. Hickey Ph.D., R. L. Walterscheid, G. Schubert Apr 2015

A Full-Wave Model For A Binary Gas Thermosphere: Effects Of Thermal Conductivity And Viscosity, Michael P. Hickey Ph.D., R. L. Walterscheid, G. Schubert

Publications

The thermosphere is diffusively separated and behaves as a multiconstituent gas wherein individual species in static equilibrium are each stratified according to their individual scale heights. Gravity waves propagating in the thermosphere cause individual gases to oscillate with different amplitudes and phases. We use a two-gas (N2 and O) full-wave model to examine the roles of thermal conductivity, viscosity, and mutual diffusion on the wave-induced characteristics of both gases. In the lower thermosphere, where the gases are relatively tightly coupled, the major gas (N2) controls the minor gas (O) response. At higher altitudes, the gases become thermally and inertially decoupled, …


An Unusual Aerial Photograph Of An Eddy Circulation In Marine Stratocumulus Clouds (Picture Of The Month), Bradley M. Muller, Christopher G. Herbster, Frederick R. Mosher Feb 2015

An Unusual Aerial Photograph Of An Eddy Circulation In Marine Stratocumulus Clouds (Picture Of The Month), Bradley M. Muller, Christopher G. Herbster, Frederick R. Mosher

Publications

An aerial photograph of a cyclonic, von Kármán–like vortex in the marine stratocumulus clouds off the California coast, taken by a commercial pilot near Grover Beach, is presented. It is believed that this is the first photograph of such an eddy, taken from an airplane, to appear in publication.

The eddy occurred with a strong inversion above a shallow marine boundary layer, in the lee of high, inversion-penetrating terrain. Tower and surface wind measurements plotted on satellite imagery demonstrate that the Grover Beach eddy was not just a cloud-level feature, but extended through the marine atmospheric boundary layer (MABL) to …


A Swirl In The Clouds Near Santa Cruz Island (Images Of Note), Bradley M. Muller, Christopher G. Herbster Jan 2015

A Swirl In The Clouds Near Santa Cruz Island (Images Of Note), Bradley M. Muller, Christopher G. Herbster

Publications

The authors discuss a rare photograph of an atmospheric eddy produced by marine boundary layer flow past terrain.


Editorial: Special Issue: Safety & Efficiency Of Civil Aviation: Selected Papers From The World Conferences Of The Air Transport Research Society And The World Conference On Transport Society - 2013, Paul Hooper, Ian Douglas, Chunyan Yu, Stefano Paleari Jan 2015

Editorial: Special Issue: Safety & Efficiency Of Civil Aviation: Selected Papers From The World Conferences Of The Air Transport Research Society And The World Conference On Transport Society - 2013, Paul Hooper, Ian Douglas, Chunyan Yu, Stefano Paleari

Publications

The Air Transport Research Society (ATRS) is a Special Interest Group (SIG) of the World Conference on Transport Research Society (WCTRS). The ATRS annual World Conference was held at the University of Bergamo, Bergamo, Italy on 26-29 June 2013 and it attracted 266 papers from 37 countries. Also, the WCTRS triennial World Conference was held on 15- 18 July at Rio de Janeiro, Brazil, during which the ATRS organised several sessions devoted to air transport topics. This special issue of the Journal of Air Transport Studies has drawn upon all of this material to present four papers that promote improvements …


Observational Evidence Of Quasi-27-Day Oscillation Propagating From The Lower Atmosphere To The Mesosphere Over 20° N, K.M. Huang, Alan Liu, S.D. Zhang, F. Yi, C.M. Huang Jan 2015

Observational Evidence Of Quasi-27-Day Oscillation Propagating From The Lower Atmosphere To The Mesosphere Over 20° N, K.M. Huang, Alan Liu, S.D. Zhang, F. Yi, C.M. Huang

Publications

By using meteor radar, radiosonde and satellite observations over 20° N and NCEP/NCAR reanalysis data during 81 days from 22 December 2004 to 12 March 2005, a quasi-27-day oscillation propagating from the troposphere to the mesosphere is reported. A pronounced 27-day periodicity is observed in the raw zonal wind from meteor radar. Spectral analysis shows that the oscillation also occurs in the meridional wind and temperature and propagates westward with wavenumber s = 1; thus the oscillation is of Rossby wave type. The oscillation attains a large amplitude of about 12 m s−1 in the eastward wind shear region of …