Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Observations And Interpretation Of Gravity Wave Induced Fluctuations In The O I (557.7 Nm) Airglow, G. Schubert, R. L. Walterscheid, Michael P. Hickey Ph.D., C. A. Tepley Jul 1999

Observations And Interpretation Of Gravity Wave Induced Fluctuations In The O I (557.7 Nm) Airglow, G. Schubert, R. L. Walterscheid, Michael P. Hickey Ph.D., C. A. Tepley

Publications

Observations of fluctuations in the intensity and temperature of the O I (557.7 nm) airglow taken at Arecibo in 1989 are reported and interpreted on the assumption that they are caused by gravity waves propagating through the emission layer. The data give the magnitude of Krassovsky's ratio as 3.5 ± 2.2, at periods between about 5 and 10 hours. Comparison with theory shows that the gravity waves responsible for the measured airglow variations must have long wavelengths of several thousand kilometers. The observed phases of Krassovsky's ratio are in good agreement with theoretically predicted values at the long wavelengths and …


A Note On Gravity Wave-Driven Volume Emission Rate Weighted Temperature Perturbations Inferred From O₂ Atmospheric And O I 5577 Airglow Observations, Michael P. Hickey Ph.D., Richard L. Walterscheid Mar 1999

A Note On Gravity Wave-Driven Volume Emission Rate Weighted Temperature Perturbations Inferred From O₂ Atmospheric And O I 5577 Airglow Observations, Michael P. Hickey Ph.D., Richard L. Walterscheid

Publications

A full-wave dynamical model and chemistry models that simulate ground-based observations of gravity wave-driven O₂ atmospheric and O I 5577 airglow fluctuations in the mesopause region are used to demonstrate that for many observable gravity waves modeling is required to infer temperature perturbation amplitudes from airglow observations. We demonstrate that the amplitude of the altitude-integrated volume emission rate weighted temperature perturbation differs by at least about 30% from the amplitude of the temperature perturbation of the major gas in the vicinity of the peak of the airglow volume emission rate for gravity waves with horizontal phase speeds less than about …