Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Numerical Analysis and Computation

Series

2012

Institution
Keyword
Publication
File Type

Articles 1 - 20 of 20

Full-Text Articles in Physical Sciences and Mathematics

Multiple Subject Barycentric Discriminant Analysis (Musubada): How To Assign Scans To Categories Without Using Spatial Normalization, Hervé Abdi, Lynne J. Williams, Andrew C. Connolly, M. Ida Gobbini Dec 2012

Multiple Subject Barycentric Discriminant Analysis (Musubada): How To Assign Scans To Categories Without Using Spatial Normalization, Hervé Abdi, Lynne J. Williams, Andrew C. Connolly, M. Ida Gobbini

Dartmouth Scholarship

We present a new discriminant analysis (DA) method called Multiple Subject Barycentric Discriminant Analysis (MUSUBADA) suited for analyzing fMRI data because it handles datasets with multiple participants that each provides different number of variables (i.e., voxels) that are themselves grouped into regions of interest (ROIs). Like DA, MUSUBADA (1) assigns observations to predefined categories, (2) gives factorial maps displaying observations and categories, and (3) optimally assigns observations to categories. MUSUBADA handles cases with more variables than observations and can project portions of the data table (e.g., subtables, which can represent participants or ROIs) on the factorial maps. Therefore MUSUBADA can …


Nabla Fractional Calculus And Its Application In Analyzing Tumor Growth Of Cancer, Fang Wu Dec 2012

Nabla Fractional Calculus And Its Application In Analyzing Tumor Growth Of Cancer, Fang Wu

Masters Theses & Specialist Projects

This thesis consists of six chapters. In the first chapter, we review some basic definitions and concepts of fractional calculus. Then we introduce fractional difference equations involving the Riemann-Liouville operator of real number order between zero and one. In the second chapter, we apply the Brouwer fixed point and Contraction Mapping Theorems to prove that there exists a solution for up to the first order nabla fractional difference equation with an initial condition. In chapter three, we define a lower and an upper solution for up to the first order nabla fractional difference equation with an initial condition. Under certain …


The Octonions And The Exceptional Lie Algebra G2, Ian M. Anderson Sep 2012

The Octonions And The Exceptional Lie Algebra G2, Ian M. Anderson

Research Vignettes

The octonions O are an 8-dimensional non-commutative, non-associative normed real algebra. The set of all derivations of O form a real Lie algebra. It is remarkable fact, first proved by E. Cartan in 1908, that the the derivation algebra of O is the compact form of the exceptional Lie algebra G2. In this worksheet we shall verify this result of Cartan and also show that the derivation algebra of the split octonions is the split real form of G2.

PDF and Maple worksheets can be downloaded from the links below.


Modeling And Mathematical Analysis Of Plant Models In Ecology, Eric A. Eager Jun 2012

Modeling And Mathematical Analysis Of Plant Models In Ecology, Eric A. Eager

Department of Mathematics: Dissertations, Theses, and Student Research

Population dynamics tries to explain in a simple mechanistic way the variations of the size and structure of biological populations. In this dissertation we use mathematical modeling and analysis to study the various aspects of the dynamics of plant populations and their seed banks.

In Chapter 2 we investigate the impact of structural model uncertainty by considering different nonlinear recruitment functions in an integral projection model for Cirsium canescens. We show that, while having identical equilibrium populations, these two models can elicit drastically different transient dynamics. We then derive a formula for the sensitivity of the equilibrium population to …


Random Number Generation: Types And Techniques, David F. Dicarlo Apr 2012

Random Number Generation: Types And Techniques, David F. Dicarlo

Senior Honors Theses

What does it mean to have random numbers? Without understanding where a group of numbers came from, it is impossible to know if they were randomly generated. However, common sense claims that if the process to generate these numbers is truly understood, then the numbers could not be random. Methods that are able to let their internal workings be known without sacrificing random results are what this paper sets out to describe. Beginning with a study of what it really means for something to be random, this paper dives into the topic of random number generators and summarizes the key …


Preconditioning Visco-Resistive Mhd For Tokamak Plasmas, Daniel R. Reynolds, Ravi Samtaney, Hilari C. Tiedeman Mar 2012

Preconditioning Visco-Resistive Mhd For Tokamak Plasmas, Daniel R. Reynolds, Ravi Samtaney, Hilari C. Tiedeman

Mathematics Research

No abstract provided.


Numerical Solution Of Integral Equations In Solidification And Laser Melting, Elizabeth Case, Johannes Tausch Feb 2012

Numerical Solution Of Integral Equations In Solidification And Laser Melting, Elizabeth Case, Johannes Tausch

Mathematics Research

No abstract provided.


Multilevel Schur Complement Preconditioner For Multi-Physics Simulations, Hilari Tiedeman, Daniel Reynolds Feb 2012

Multilevel Schur Complement Preconditioner For Multi-Physics Simulations, Hilari Tiedeman, Daniel Reynolds

Mathematics Research

No abstract provided.


The Immersed Interface Method For Two-Fluid Problems, Miguel Uh, Sheng Xu Feb 2012

The Immersed Interface Method For Two-Fluid Problems, Miguel Uh, Sheng Xu

Mathematics Research

No abstract provided.


Block Preconditioning Of Stiff Implicit Models For Radiative Ionization In The Early Universe, Daniel R. Reynolds, Robert Harkness, Geoffrey So, Michael L. Norman Feb 2012

Block Preconditioning Of Stiff Implicit Models For Radiative Ionization In The Early Universe, Daniel R. Reynolds, Robert Harkness, Geoffrey So, Michael L. Norman

Mathematics Research

No abstract provided.


On The Stability Of A Microstructure Model, Mihhail Berezovski, Arkadi Berezovski Feb 2012

On The Stability Of A Microstructure Model, Mihhail Berezovski, Arkadi Berezovski

Publications

Abstract

The asymptotic stability of solutions of the Mindlin-type microstructure model for solids is analyzed in the paper. It is shown that short waves are asymptotically stable even in the case of a weakly non-convex free energy dependence on microdeformation.

Research highlights

The Mindlin-type microstructure model cannot describe properly short wave propagation in laminates. A modified Mindlin-type microstructure model with weakly non-convex free energy resolves this discrepancy. It is shown that the improved model with weakly non-convex free energy is asymptotically stable for short waves.


Reformulation Of The Muffin-Tin Problem In Electronic Structure Calculations Within The Feast Framework, Alan R. Levin Jan 2012

Reformulation Of The Muffin-Tin Problem In Electronic Structure Calculations Within The Feast Framework, Alan R. Levin

Masters Theses 1911 - February 2014

This thesis describes an accurate and scalable computational method designed to perform nanoelectronic structure calculations. Built around the FEAST framework, this method directly addresses the nonlinear eigenvalue problem. The new approach allows us to bypass traditional approximation techniques typically used for first-principle calculations. As a result, this method is able to take advantage of standard muffin-tin type domain decomposition techniques without being hindered by their perceived limitations. In addition to increased accuracy, this method also has the potential to take advantage of parallel processing for increased scalability.

The Introduction presents the motivation behind the proposed method and gives an overview …


Spatial And Temporal Correlations Of Freeway Link Speeds: An Empirical Study, Piotr J. Rachtan Jan 2012

Spatial And Temporal Correlations Of Freeway Link Speeds: An Empirical Study, Piotr J. Rachtan

Masters Theses 1911 - February 2014

Congestion on roadways and high level of uncertainty of traffic conditions are major considerations for trip planning. The purpose of this research is to investigate the characteristics and patterns of spatial and temporal correlations and also to detect other variables that affect correlation in a freeway setting. 5-minute speed aggregates from the Performance Measurement System (PeMS) database are obtained for two directions of an urban freeway – I-10 between Santa Monica and Los Angeles, California. Observations are for all non-holiday weekdays between January 1st and June 30th, 2010. Other variables include traffic flow, ramp locations, number of lanes and the …


Singular Solutions Of Coss-Coupled Epdiff Equations: Waltzing Peakons And Compacton Pairs, Colin Cotter, Darryl Holm, Rossen Ivanov, James Percival Jan 2012

Singular Solutions Of Coss-Coupled Epdiff Equations: Waltzing Peakons And Compacton Pairs, Colin Cotter, Darryl Holm, Rossen Ivanov, James Percival

Conference papers

We introduce EPDiff equations as Euler-Poincare´ equations related to Lagrangian provided by a metric, invariant under the Lie Group Diff(Rn). Then we proceed with a particular form of EPDiff equations, a cross coupled two-component system of Camassa-Holm type. The system has a new type of peakon solutions, 'waltzing' peakons and compacton pairs.


Controlling Nanoparticles Formation In Molten Metallic Bilayers By Pulsed-Laser Interference Heating, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman Jan 2012

Controlling Nanoparticles Formation In Molten Metallic Bilayers By Pulsed-Laser Interference Heating, Mikhail Khenner, Sagar Yadavali, Ramki Kalyanaraman

Mathematics Faculty Publications

The impacts of the two-beam interference heating on the number of core-shell and embedded nanoparticles and on nanostructure coarsening are studied numerically based on the non-linear dynamical model for dewetting of the pulsed-laser irradiated, thin (< 20 nm) metallic bilayers. The model incorporates thermocapillary forces and disjoining pressures, and assumes dewetting from the optically transparent substrate atop of the reflective support layer, which results in the complicated dependence of light reflectivity and absorption on the thicknesses of the layers. Stabilizing thermocapillary effect is due to the local thickness-dependent, steady- state temperature profile in the liquid, which is derived based on the mean substrate temperature estimated from the elaborate thermal model of transient heating and melting/freezing. Linear stability analysis of the model equations set for Ag/Co bilayer predicts the dewetting length scales in the qualitative agreement with experiment.


Anisotropic Diffusivity Of The Prismatic Surface Of Ice Is Model Independent, Natalie D. Bowens Jan 2012

Anisotropic Diffusivity Of The Prismatic Surface Of Ice Is Model Independent, Natalie D. Bowens

Summer Research

In simulations reported by Gladich et al., the surface diffusion on the prismatic surface of ice was found to be anisotropic at low temperatures and isotropic at high temperatures in the NE6 model. Our research investigated whether this effect is a true property of ice, or an artifact of NE6 model, by using the TIP4P/2005 and the TIP5P-EW representations. It was found that anisotropy of surface diffusion on the Prismatic facet at low temperatures is model independent. An Arrhenius analysis was also preformed to find the activation energies of diffusion in both models.


Wave Propagation And Dispersion In Microstructured Solids, Arkadi Berezovski, Juri Engelbrecht, Mihhail Berezovski Jan 2012

Wave Propagation And Dispersion In Microstructured Solids, Arkadi Berezovski, Juri Engelbrecht, Mihhail Berezovski

Publications

A series of numerical simulations is carried on in order to understand the accuracy of dispersive wave models for microstructured solids. The computations are performed by means of the finite-volume numerical scheme, which belongs to the class of wave-propagation algorithms. The dispersion effects are analyzed in materials with different internal structures: microstructure described by micromorphic theory, regular laminates, laminates with substructures, etc., for a large range of material parameters and wavelengths.


On The Global Stability Of A Generalized Cholera Epidemiological Model, Yuanji Cheng, Jin Wang, Xiuxiang Yang Jan 2012

On The Global Stability Of A Generalized Cholera Epidemiological Model, Yuanji Cheng, Jin Wang, Xiuxiang Yang

Mathematics & Statistics Faculty Publications

In this paper, we conduct a careful global stability analysis for a generalized cholera epidemiological model originally proposed in [J. Wang and S. Liao, A generalized cholera model and epidemic/endemic analysis, J. Biol. Dyn. 6 (2012), pp. 568-589]. Cholera is a water-and food-borne infectious disease whose dynamics are complicated by the multiple interactions between the human host, the pathogen, and the environment. Using the geometric approach, we rigorously prove the endemic global stability for the cholera model in three-dimensional (when the pathogen component is a scalar) and four-dimensional (when the pathogen component is a vector) systems. This work unifies the …


Wavelet Collocation Method And Multilevel Augmentation Method For Hammerstein Equations, Hideaki Kaneko, Khomsan Neamprem, Boriboon Novaprateep Jan 2012

Wavelet Collocation Method And Multilevel Augmentation Method For Hammerstein Equations, Hideaki Kaneko, Khomsan Neamprem, Boriboon Novaprateep

Mathematics & Statistics Faculty Publications

No abstract provided.


Numerical Methods For Fluid-Structure Interaction - A Review, Gene Hou, Jin Wang, Anita Layton Jan 2012

Numerical Methods For Fluid-Structure Interaction - A Review, Gene Hou, Jin Wang, Anita Layton

Mechanical & Aerospace Engineering Faculty Publications

The interactions between incompressible fluid flows and immersed structures are nonlinear multi-physics phenomena that have applications to a wide range of scientific and engineering disciplines. In this article, we review representative numerical-methods based on conforming and non-conforming meshes that are currently available for computing fluid-structure interaction problems, with an emphasis on some of the recent developments in the field. A goal is to categorize the selected methods and assess their accuracy and efficiency. We discuss challenges faced by researchers in this field, and we emphasize the importance of interdisciplinary effort for advancing the study in fluid-structure interactions