Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Kinetic Monte Carlo Methods For Computing First Capture Time Distributions In Models Of Diffusive Absorption, Daniel Schmidt Jan 2017

Kinetic Monte Carlo Methods For Computing First Capture Time Distributions In Models Of Diffusive Absorption, Daniel Schmidt

HMC Senior Theses

In this paper, we consider the capture dynamics of a particle undergoing a random walk above a sheet of absorbing traps. In particular, we seek to characterize the distribution in time from when the particle is released to when it is absorbed. This problem is motivated by the study of lymphocytes in the human blood stream; for a particle near the surface of a lymphocyte, how long will it take for the particle to be captured? We model this problem as a diffusive process with a mixture of reflecting and absorbing boundary conditions. The model is analyzed from two approaches. …


Paving The Randomized Gauss-Seidel, Wei Wu Jan 2017

Paving The Randomized Gauss-Seidel, Wei Wu

Scripps Senior Theses

The Randomized Gauss-Seidel Method (RGS) is an iterative algorithm that solves overdetermined systems of linear equations Ax = b. This paper studies an update on the RGS method, the Randomized Block Gauss-Seidel Method. At each step, the algorithm greedily minimizes the objective function L(x) = kAx bk2 with respect to a subset of coordinates. This paper describes a Randomized Block Gauss-Seidel Method (RBGS) which uses a randomized control method to choose a subset at each step. This algorithm is the first block RGS method with an expected linear convergence rate which can be described by the properties of the matrix …


Daily Traffic Flow Pattern Recognition By Spectral Clustering, Matthew Aven Jan 2017

Daily Traffic Flow Pattern Recognition By Spectral Clustering, Matthew Aven

CMC Senior Theses

This paper explores the potential applications of existing spectral clustering algorithms to real life problems through experiments on existing road traffic data. The analysis begins with an overview of previous unsupervised machine learning techniques and constructs an effective spectral clustering algorithm that demonstrates the analytical power of the method. The paper focuses on the spectral embedding method’s ability to project non-linearly separable, high dimensional data into a more manageable space that allows for accurate clustering. The key step in this method involves solving a normalized eigenvector problem in order to construct an optimal representation of the original data.

While this …