Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Natural Resources and Conservation

2017

Series

15N

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Drivers Of Nitrogen Transfer In Stream Food Webs Across Continents, B. C. Norman, M. R. Whiles, S. M. Collins, A. S. Flecker, S. K. Hamilton, S. L. Johnson, E. J. Rosi-Marshall, L. R. Ashkenas, W. B. Bowden, C. L. Crenshaw, T. Crowl, W. K. Dodds, R. O. Hall, R. El-Sabaawi, N. A. Griffiths, E. Marti, W. H. Mcdowell, S. D. Peterson, H. M. Rantala, T. Riis, K. S. Simon, J. L. Tank, S. A. Thomas, D. Von Schiller, J. R. Webster Jan 2017

Drivers Of Nitrogen Transfer In Stream Food Webs Across Continents, B. C. Norman, M. R. Whiles, S. M. Collins, A. S. Flecker, S. K. Hamilton, S. L. Johnson, E. J. Rosi-Marshall, L. R. Ashkenas, W. B. Bowden, C. L. Crenshaw, T. Crowl, W. K. Dodds, R. O. Hall, R. El-Sabaawi, N. A. Griffiths, E. Marti, W. H. Mcdowell, S. D. Peterson, H. M. Rantala, T. Riis, K. S. Simon, J. L. Tank, S. A. Thomas, D. Von Schiller, J. R. Webster

School of Natural Resources: Faculty Publications

Studies of trophic-level material and energy transfers are central to ecology. The use of isotopic tracers has now made it possible to measure trophic transfer efficiencies of important nutrients and to better understand how these materials move through food webs. We analyzed data from thirteen 15N-ammonium tracer addition experiments to quantify N transfer from basal resources to animals in headwater streams with varying physical, chemical, and biological features. N transfer efficiencies from primary uptake compartments (PUCs; heterotrophic microorganisms and primary producers) to primary consumers was lower (mean: 11.5%, range:100%). Total N transferred (as a rate) was greater in streams …


Partitioning Assimilatory Nitrogen Uptake In Streams: An Analysis Of Stable Isotope Tracer Additions Across Continents, J. L. Tank, E. Martí, T. Riis, D. Von Schiller, A. J. Reisinger, W. K. Dodds, M. R. Whiles, L. R. Ashkenas, W. B. Bowden, S. M. Collins, C. L. Crenshaw, T. A. Crowl, N. A. Griffiths, N. B. Grimm, S. K. Hamilton, S. L. Johnson, W. H. Mcdowell, B. M. Norman, E. J. Rosi, K. S. Simon, S. A. Thomas, J. R. Webster Jan 2017

Partitioning Assimilatory Nitrogen Uptake In Streams: An Analysis Of Stable Isotope Tracer Additions Across Continents, J. L. Tank, E. Martí, T. Riis, D. Von Schiller, A. J. Reisinger, W. K. Dodds, M. R. Whiles, L. R. Ashkenas, W. B. Bowden, S. M. Collins, C. L. Crenshaw, T. A. Crowl, N. A. Griffiths, N. B. Grimm, S. K. Hamilton, S. L. Johnson, W. H. Mcdowell, B. M. Norman, E. J. Rosi, K. S. Simon, S. A. Thomas, J. R. Webster

School of Natural Resources: Faculty Publications

Headwater streams remove, transform, and store inorganic nitrogen (N) delivered from surrounding watersheds, but excessive N inputs from human activity can saturate removal capacity. Most research has focused on quantifying N removal from the water column over short periods and in individual reaches, and these ecosystem-scale measurements suggest that assimilatory N uptake accounts for most N removal. However, cross-system comparisons addressing the relative role of particular biota responsible for incorporating inorganic N into biomass are lacking. Here we assess the importance of different primary uptake compartments on reach-scale ammonium (NH4+-N) uptake and storage across a wide range …