Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Metallurgy

Series

Institution
Keyword
Publication Year
Publication

Articles 1 - 30 of 174

Full-Text Articles in Physical Sciences and Mathematics

The Behavior Of ½⟨111⟩ Screw Dislocations In W–Mo Alloys Analyzed Through Atomistic Simulations, Lucas A. Heaton, Kevin Chu, Adib J. Samin Feb 2024

The Behavior Of ½⟨111⟩ Screw Dislocations In W–Mo Alloys Analyzed Through Atomistic Simulations, Lucas A. Heaton, Kevin Chu, Adib J. Samin

Faculty Publications

Analyzing plastic flow in refractory alloys is relevant to many different commercial and technological applications. In this study, screw dislocation statics and dynamics were studied for various compositions of the body-centered cubic binary alloy tungsten–molybdenum (W–Mo). The core structure did not appear to change for different alloy compositions, consistent with the literature. The pure tungsten and pure molybdenum samples had the lowest plastic flow, while the highest dislocation velocities were observed for equiatomic, W0.5Mo0.5 alloys. In general, dislocation velocities were found to largely align with a well-established dislocation mobility phenomenological model supporting two discrete dislocation mobility regimes, …


Corrosion Case Study On Pipeline, Kangze Ren Oct 2023

Corrosion Case Study On Pipeline, Kangze Ren

Corrosion Research

The Kashagan pipeline leaks were likely caused by sulfur stress corrosion cracking, a combined corrosion mechanism developed by the presence of high pressure, the high level of hydrogen sulfide(the main "ingredient" of sour gas), and poor metallurgical choice. Improper welding and poor metallurgical examination were blamed for causing the leaking issue. The purpose of the current review is to raise the alarm about the inappropriate corrosion management of Kashagan oil production and its societal and environmental consequences.


Machine Learning Prediction Of Hea Properties, Nicholas J. Beaver, Nathaniel Melisso, Travis Murphy Oct 2023

Machine Learning Prediction Of Hea Properties, Nicholas J. Beaver, Nathaniel Melisso, Travis Murphy

College of Engineering Summer Undergraduate Research Program

High-entropy alloys (HEA) are a very new development in the field of metallurgical materials. They are made up of multiple principle atoms unlike traditional alloys, which contributes to their high configurational entropy. The microstructure and properties of HEAs are are not well predicted with the models developed for more common engineering alloys, and there is not enough data available on HEAs to fully represent the complex behavior of these alloys. To that end, we explore how the use of machine learning models can be used to model the complex, high dimensional behavior in the HEA composition space. Based on our …


Experimental Evidence That Shear Bands In Metallic Glasses Nucleate Like Cracks, Alan A. Long, Wendelin Wright, Xiaojun Gu, Anna Thackray, Mayisha Nakib, Jonathan T. Uhl, Karin A. Dahmen Nov 2022

Experimental Evidence That Shear Bands In Metallic Glasses Nucleate Like Cracks, Alan A. Long, Wendelin Wright, Xiaojun Gu, Anna Thackray, Mayisha Nakib, Jonathan T. Uhl, Karin A. Dahmen

Faculty Journal Articles

Highly time-resolved mechanical measurements, modeling, and simulations show that large shear bands in bulk metallic glasses nucleate in a manner similar to cracks. When small slips reach a nucleation size, the dynamics changes and the shear band rapidly grows to span the entire sample. Smaller nucleation sizes imply lower ductility. Ductility can be increased by increasing the nucleation size relative to the maximum (“cutoff”) shear band size at the upper edge of the power law scaling range of their size distribution. This can be achieved in three ways: (1) by increasing the nucleation size beyond this cutoff size of the …


Metal Complexes Of Redox Active Ligands, Alexandra Chaparro, Parker Keller Apr 2022

Metal Complexes Of Redox Active Ligands, Alexandra Chaparro, Parker Keller

Chemistry & Biochemistry Student Scholarship

Alexandra Chaparro ’22, Major: Biochemistry

Parker Keller ’24, Major: Chemistry

Mentor: Dr. Maria Carroll, Chemistry and Biochemistry

Our research focuses on synthesizing and studying the properties of metal complexes that contain redox active ligands. Ligands are molecules or ions that can bind to a metal ion, and this particular class of ligands is interesting because they can either accept or lose electrons. We synthesized zinc complexes, in order to measure the reduction potentials of the ligands, which provide information about the ease with which they accept electrons. We then synthesized iron complexes and determined their structures. These complexes are potentially …


Augmented Reality Integrated Welder Training For Mechanical Engineering Technology, Aditya Akundi, Hamid Eisazadeh, Mona Torabizadeh Jan 2022

Augmented Reality Integrated Welder Training For Mechanical Engineering Technology, Aditya Akundi, Hamid Eisazadeh, Mona Torabizadeh

Engineering Technology Faculty Publications

The shortage of welders is well documented and projected to become more severe for various industries such as shipbuilding in coming years. It is mainly because welding training is a critical and often costly endeavor. This study examines the training potential using augmented reality technology as a critical part of welder training for mechanical engineering technology students. This study assessed the performance of two groups of MET students trained with two different methods. One group received training with the traditional method in three sessions. The second group acquired training initially with an augmented reality welding system for three sessions. Then, …


Magnetocaloric Effect Near Room Temperature In Quintenary And Sextenary Heusler Alloys, Benjamin D. White, R. I. Barabash, O. M. Barabash, I. Jeon, M. B. Maple Oct 2019

Magnetocaloric Effect Near Room Temperature In Quintenary And Sextenary Heusler Alloys, Benjamin D. White, R. I. Barabash, O. M. Barabash, I. Jeon, M. B. Maple

All Faculty Scholarship for the College of the Sciences

An inverse magnetocaloric effect is studied in Ni2Mn1+xX1-x-type Heusler alloys. Principally known for their shape-memory properties, these alloys also exhibit significant entropy and temperature changes (ΔS and ΔTAd, respectively) under adiabatic conditions when a modest magnetic field is applied. We investigated the impact on magnetocaloric properties of introducing substantial chemical disorder on the X-site (X = Si, Ga, In), of replacing Ni with nonmagnetic Ag, and of replacing a small amount of Mn with Gd. While a reduction in ΔS is observed in the first two cases, we observe a significant enhancement …


Analysis Of Surface Integrity In Machining Of Aisi 304 Stainless Steel Under Various Cooling And Cutting Conditions, F. Klocke, B. Döbbeler, S. Lung, S. Seelbach, Ibrahim S. Jawahir May 2018

Analysis Of Surface Integrity In Machining Of Aisi 304 Stainless Steel Under Various Cooling And Cutting Conditions, F. Klocke, B. Döbbeler, S. Lung, S. Seelbach, Ibrahim S. Jawahir

Institute for Sustainable Manufacturing Faculty Publications

Recent studies have shown that machining under specific cooling and cutting conditions can be used to induce a nanocrystalline surface layer in the workspiece. This layer has beneficial properties, such as improved fatigue strength, wear resistance and tribological behavior. In machining, a promising approach for achieving grain refinement in the surface layer is the application of cryogenic cooling. The aim is to use the last step of the machining operation to induce the desired surface quality to save time-consuming and expensive post machining surface treatments. The material used in this study was AISI 304 stainless steel. This austenitic steel suffers …


Nanostructural Origin Of Semiconductivity And Large Magnetoresistance In Epitaxial Nico2O4/Al2O3 Thin Films, Congmian Zhen, Xiaozhe Zhang, Wengang Wei, Wenzhe Guo, Ankit Pant, Xiaoshan Xu, Jian Shen, Li Ma, Denglu Hou Mar 2018

Nanostructural Origin Of Semiconductivity And Large Magnetoresistance In Epitaxial Nico2O4/Al2O3 Thin Films, Congmian Zhen, Xiaozhe Zhang, Wengang Wei, Wenzhe Guo, Ankit Pant, Xiaoshan Xu, Jian Shen, Li Ma, Denglu Hou

Xiaoshan Xu Papers

Despite low resistivity (~1 mΩ cm), metallic electrical transport has not been commonly observed in inverse spinel NiCo2O4, except in certain epitaxial thin films. Previous studies have stressed the effect of valence mixing and the degree of spinel inversion on the electrical conduction of NiCo2O4 films. In this work, we studied the effect of nanostructural disorder by comparing the NiCo2O4 epitaxial films grown on MgAl2O4 (1 1 1) and on Al2O3 (0 0 1) substrates. Although the optimal growth conditions are similar for the …


Induced Ferromagnetism In Multilayered Graphene In Proximity With Cofe2o4, Himanshu Verma, Dereje Seifu, Shashi P. Karna, Haiping Hong, Mohindar S. Seehra Jan 2018

Induced Ferromagnetism In Multilayered Graphene In Proximity With Cofe2o4, Himanshu Verma, Dereje Seifu, Shashi P. Karna, Haiping Hong, Mohindar S. Seehra

Faculty & Staff Scholarship

Composites of anisotropic diamagnetic multilayer Graphene (MLG) and ferrimagnetic CoFe2O4 (CFO) nanoparticles (NPs) were synthesized through a one-step sonication process in the presence of a surfactant. The samples were characterized at ambi- ent using x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), Raman spectroscopy, magnetic force microscopy (MFM) and magnetometry (vibrating sample magnetometer). An induced ferromagnetism was observed in MLG with saturation magnetization MS = 18 emu/g(MLG). This induced ferromagnetism is attributed to ferrimagnetic CFO uniformly distributed on the surface of diamagnetic MLG. SEM images confirm uniform dense distribu- tion of CFO nanoparticles on MLG. MFM images …


Thermodynamics Of Concentrated Solid Solution Alloys, Michael C. Gao, Chuan Zhang, Pan Gao, Fan Zhang, Lizhi Ouyang, Michael Widom, Jeffrey A. Hawk Oct 2017

Thermodynamics Of Concentrated Solid Solution Alloys, Michael C. Gao, Chuan Zhang, Pan Gao, Fan Zhang, Lizhi Ouyang, Michael Widom, Jeffrey A. Hawk

Mathematical Sciences Faculty Research

This paper reviews the three main approaches for predicting the formation of concentrated solid solution alloys (CSSA) and for modeling their thermodynamic properties, in particular, utilizing the methodologies of empirical thermo-physical parameters, CALPHAD method, and first-principles calculations combined with hybrid Monte Carlo/Molecular Dynamics (MC/MD) simulations. In order to speed up CSSA development, a variety of empirical parameters based on Hume-Rothery rules have been developed. Herein, these parameters have been systematically and critically evaluated for their efficiency in predicting solid solution formation. The phase stability of representative CSSA systems is then illustrated from the perspectives of phase diagrams and nucleation driving …


Interplay Of Quantum Size Effect, Anisotropy And Surface Stress Shapes The Instability Of Thin Metal Films, Mikhail Khenner Aug 2017

Interplay Of Quantum Size Effect, Anisotropy And Surface Stress Shapes The Instability Of Thin Metal Films, Mikhail Khenner

Mathematics Faculty Publications

Morphological instability of a planar surface ([111], [011], or [001]) of an ultra-thin metal film is studied in a parameter space formed by three major effects (the quantum size effect, the surface energy anisotropy and the surface stress) that influence a film dewetting. The analysis is based on the extended Mullins equation, where the effects are cast as functions of the film thickness. The formulation of the quantum size effect (Z. Zhang et al., PRL 80, 5381 (1998)) includes the oscillation of the surface energy with thickness caused by electrons confinement. By systematically comparing the effects, their contributions into the …


The Magnetic, Electrical And Structural Properties Of Copper-Permalloy Alloys, Makram A. Qader, A. Vishina, Lei Yu, Cougar Garcia, Rakesh K. Singh, Nicholas D. Rizzo, Mengchu Huang, Ralph Chamberlin, Kirill Belashchenko, Mark Van Schilfgaarde, N. Newman Jun 2017

The Magnetic, Electrical And Structural Properties Of Copper-Permalloy Alloys, Makram A. Qader, A. Vishina, Lei Yu, Cougar Garcia, Rakesh K. Singh, Nicholas D. Rizzo, Mengchu Huang, Ralph Chamberlin, Kirill Belashchenko, Mark Van Schilfgaarde, N. Newman

Kirill Belashchenko Publications

Copper-permalloy [Cu1–x(Ni80Fe20)x] alloy films were deposited by co-sputtering and their chemical, structural, magnetic, and electrical properties were characterized. These films are found to have favorable weak ferromagnetic properties for low temperature magnetoelectronic applications. Our results show that by varying the composition, the saturation magnetization (Ms) can be tuned from 700 emu/cm3 to 0 and the Curie temperature (Tc), can be adjusted from 900 K to 0 K. The Ms and Tc are found to scale linearly between x = 25% and 100%. Electronic structure calculations …


Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das Apr 2017

Fabrication And Study Of The Structure And Magnetism Of Rare-Earth Free Nanoclusters, Bhaskar Das

Department of Physics and Astronomy: Dissertations, Theses, and Student Research

No abstract provided.


Combined Computational-Experimental Design Of High-Temperature, High-Intensity Permanent Magnetic Alloys With Minimal Addition Of Rare-Earth Elements, Rajesh Jha May 2016

Combined Computational-Experimental Design Of High-Temperature, High-Intensity Permanent Magnetic Alloys With Minimal Addition Of Rare-Earth Elements, Rajesh Jha

FIU Electronic Theses and Dissertations

AlNiCo magnets are known for high-temperature stability and superior corrosion resistance and have been widely used for various applications. Reported magnetic energy density ((BH) max) for these magnets is around 10 MGOe. Theoretical calculations show that ((BH) max) of 20 MGOe is achievable which will be helpful in covering the gap between AlNiCo and Rare-Earth Elements (REE) based magnets. An extended family of AlNiCo alloys was studied in this dissertation that consists of eight elements, and hence it is important to determine composition-property relationship between each of the alloying elements and their influence on the bulk properties.

In …


Practical Aspects Of Modern And Future Permanent Magnets, R.W. Mccallum, L. H. Lewis, Ralph Skomski, M. J. Kramer, I. E. Anderson Jan 2014

Practical Aspects Of Modern And Future Permanent Magnets, R.W. Mccallum, L. H. Lewis, Ralph Skomski, M. J. Kramer, I. E. Anderson

Ralph Skomski Publications

The mandate to reduce greenhouse gases will require highly efficient electric machines for both power generation and traction motor applications. Although permanent magnet electric machines utilizing Nd2Fe14B-based magnets provide obvious power-to-weight advantages over induction machines, the limited availability and high price of the rare earth (RE) metals make these machines less favorable. Of particular concern is the cost and supply criticality of Dy, a key RE element that is required to improve the high-temperature performance of Nd-based magnetic alloys for use in generators and traction motors. Alternatives to RE-based alloys do exist, but they currently lack the energy density necessary …


Fabrication Of Size-Tunable Metallic Nanoparticles Using Plasmid Dna As A Biomolecular Reactor, Jacopo Samson, Irene Piscopo, Alex Yampolski, Patrick Nahirney, Andrea Parpas, Amit Aggarwal, Raihan Saleh, Charles Michael Drain Oct 2011

Fabrication Of Size-Tunable Metallic Nanoparticles Using Plasmid Dna As A Biomolecular Reactor, Jacopo Samson, Irene Piscopo, Alex Yampolski, Patrick Nahirney, Andrea Parpas, Amit Aggarwal, Raihan Saleh, Charles Michael Drain

Publications and Research

Plasmid DNA can be used as a template to yield gold, palladium, silver, and chromium nanoparticles of different sizes based on variations in incubation time at 70 °C with gold phosphine complexes, with the acetates of silver or palladium, or chromium acetylacetonate. The employment of mild synthetic conditions, minimal procedural steps, and aqueous solvents makes this method environmentally greener and ensures general feasibility. The use of plasmids exploits the capabilities of the biotechnology industry as a source of nanoreactor materials.


Environmental Effects On Corrosion Properties Of Alloy 22, Mano Misra Sep 2008

Environmental Effects On Corrosion Properties Of Alloy 22, Mano Misra

Publications (YM)

This document presents detailed technical report for four Subtasks that were conducted independently. All four Subtasks investigated environmental effects on corrosion properties of Alloy 22. The four Subtasks that were investigated are as follows: Subtask 1: Experimental Determination of Parameters for the General Corrosion Model. Subtask 2: Corrosion under Dust Deposits Containing Hygroscopic Salts. Subtask 3: Heated Electrode Approach for the Study of Corrosion Under Aggressive Conditions. Subtask 4: Effect of Hydrogen Permeation on the Stability of the Passive Film of Alloy 22.


Fundamental And Applied Experimental Investigations Of Corrosion Of Steel By Lbe Under Controlled Conditions: Kinetics, Chemistry Morphology, And Surface Preparation, John Farley, Allen L. Johnson Jan 2008

Fundamental And Applied Experimental Investigations Of Corrosion Of Steel By Lbe Under Controlled Conditions: Kinetics, Chemistry Morphology, And Surface Preparation, John Farley, Allen L. Johnson

Transmutation Sciences Materials (TRP)

Advanced nuclear processes and facilities (e.g., transmutation of nuclear waste, fast reactors, and spallation neutron sources) impose special demands on materials, which must withstand high temperatures, high radiation fields, and chemical corrosion. Proposed schemes for transmuting nuclear waste require a nonmoderating coolant such as lead-bismuth eutectic (LBE) or liquid sodium. While LBE corrodes most steels, small amounts of oxygen in the LBE greatly reduces the corrosion rate, and could ideally re-grow a damaged oxide layer in situ. The protective oxide layer would thus be self-healing. However, a fundamental understanding of the role of oxygen and passivating oxide layers is presently …


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy Jan 2008

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

The beneficial effects of Si on both the metallurgical and corrosion properties of Cr-Mo steels have previously been demonstrated at UNLV. Therefore, additions of Si ranging from 0.5-2.0 weight percent (wt%) was attempted in this investigation to explore Si effect on both the high temperature tensile properties and corrosion behavior of T91 grade steel. Corrosion studies in the presence of molten LBE could not be performed due to a lack of proper experimental facilities at UNLV. Therefore, detailed corrosion studies involving Si-containing T91 grade steels were performed in an aggressive aqueous solution of acidic pH. Further, significant efforts have been …


Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead Alloy Coolant Systems, Yitung Chen, Taide Tan, Jinsuo Zhang, Jichun Li Jan 2008

Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead Alloy Coolant Systems, Yitung Chen, Taide Tan, Jinsuo Zhang, Jichun Li

Transmutation Sciences Materials (TRP)

In advanced nuclear energy systems, lead alloys emerge as strong candidates for transmutation and advanced reactor systems as nuclear coolants and spallation neutron targets. However, it is widely recognized that corrosion of materials caused by lead alloys presents a critical barrier to their industrial use. A few experimental research and development projects have been set up by different groups such as at Los Alamos National Laboratory to study the corrosion phenomena in their test facilities and to develop mitigation techniques and materials. One of the central or main techniques under development is to use active control of oxygen thermodynamic activity …


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das Jan 2008

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.

In parallel, lead-bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive to …


Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske Jan 2008

Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske

Fuels Campaign (TRP)

This project focuses on the chemical bonding and interface formation of metal fission products with the coating materials used in tri-isotropic (TRISO) fuel particles for gas-cooled reactors. By combining surface- and bulk-sensitive spectroscopic and microscopic methods, intermediate chemical phases at the interface, intermixing/diffusion behavior, and the electronic interface structure for different coating materials and metals are examined.

In detail, the project studies the interface formation of Pd, Cs, and Ag with SiC and pyrolytic carbon. Using SiC single crystals and highly-ordered pyrolytic carbon (HOPG) as substrates, interfaces are prepared under controlled conditions in an ultra-high vacuum environment and are studied …


Use Of Positron Annihilation Spectroscopy For Stress-Strain Measurements, Ajit K. Roy Jan 2007

Use Of Positron Annihilation Spectroscopy For Stress-Strain Measurements, Ajit K. Roy

Transmutation Sciences Materials (TRP)

During the past academic year, this project was focused on the characterization of residual stress in welded specimens consisting of austenitic and martensitic stainless steels using an activation technique based on the Positron Annihilation Spectroscopic (PAS) method. The extent of residual stress was expressed in terms of three line-shape parameters (S-, W- and T-). Further, efforts were made to characterize linear lattice defects such as dislocations in the vicinity of Fusion-Line (FL), Heat-Affected- Zone (HAZ), and the base material of the welded specimens using Transmission Electron Microscopy (TEM). The metallurgical microstructures at these three regions have also been evaluated by …


Fundamental And Applied Experimental Investigations Of Corrosion Of Steel By Lbe Under Controlled Conditions: Kinetics, Chemistry Morphology, And Surface Preparation, John Farley, Allen L. Johnson, Dale L. Perry Jan 2007

Fundamental And Applied Experimental Investigations Of Corrosion Of Steel By Lbe Under Controlled Conditions: Kinetics, Chemistry Morphology, And Surface Preparation, John Farley, Allen L. Johnson, Dale L. Perry

Transmutation Sciences Materials (TRP)

Advanced nuclear processes and facilities (e.g., transmutation of nuclear waste, fast reactors, and spallation neutron sources) impose special demands on materials, which must withstand high temperatures, high radiation fields, and chemical corrosion. Proposed schemes for transmuting nuclear waste require a nonmoderating coolant such as lead-bismuth eutectic (LBE). While LBE corrodes most steels, small amounts of oxygen in the LBE greatly reduces the corrosion rate, and could ideally re-grow a damaged oxide layer in-situ. The protective oxide layer would thus be self-healing. However, the fundamental understanding of the role of oxygen and passivating oxide layers is presently incomplete.

During the present …


Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy Jan 2007

Effect Of Silicon Content On The Corrosion Resistance And Radiation- Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems, Ajit K. Roy

Transmutation Sciences Materials (TRP)

This task is focused on the evaluation of the effects of silicon content on both the corrosion behavior and radiation-induced embrittlement of martensitic stainless steels having compositions similar to that of modified 9Cr-1Mo steel, also known as T91 grade steel. T91 grade steel was selected to be a candidate structural material to contain molten lead-bismuth eutectic (LBE), which can act both as a target material and a coolant during the spallation process. The operating temperature during this process may range from 420-550 °C. Thus, moderate tensile strength of the containment material (T91) is a major requirement.

The beneficial effects of …


Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead Alloy Coolant Systems, Yitung Chen, Jinsuo Zhang, Jichun Li Jan 2007

Theoretical Modeling Of Protective Oxide Layer Growth In Non-Isothermal Lead Alloy Coolant Systems, Yitung Chen, Jinsuo Zhang, Jichun Li

Transmutation Sciences Materials (TRP)

The goal of the proposed research project is to provide basic understanding of the protective oxide layer behaviors and to develop oxide layer growth models of steels in non-isothermal lead-alloys (lead or lead-bismuth eutectic) coolant systems. Precise studies and simulations of all hydrodynamics with thermal conditions encountered in practical coolant loop systems by use of different flowing conditions in the laboratory are difficult and expensive, if not impossible. Therefore it is important and necessary to develop theoretical models to predict the protective oxide layer behaviors at the design stage of a practical lead-alloy coolant system, to properly interpret and apply …


Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das Jan 2007

Development Of Nanostructure Based Corrosion-Barrier Coatings On Steel For Transmutation Applications, Biswajit Das

Transmutation Sciences Materials (TRP)

Advanced transmutation systems require structural materials that are able to withstand high neutron fluxes, high thermal cycling, and high resistance to chemical corrosion. The current candidate materials for such structures are ferritic and ferritic-martensitic steels due to their strong resistance to swelling, good microstructural stability under irradiation, and the retention of adequate ductility at typical reactor operating temperatures.

In parallel, lead-bismuth eutectic (LBE) has emerged as a potential spallation target material for efficient production of neutrons, as well as a coolant in the accelerator system. While LBE has excellent properties as a nuclear coolant, it is also highly corrosive to …


Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske Jan 2007

Interaction Between Metal Fission Products And Triso Coating Materials, Clemens Heske

Fuels Campaign (TRP)

This project focuses on the chemical bonding and interface formation of metal fission products with the coating materials used in tri-isotropic (TRISO) fuel particles for gas-cooled reactors. By combining surface- and bulk-sensitive spectroscopic methods, intermediate chemical phases at the interface, intermixing/ diffusion behavior, and the electronic interface structure as a function of material (metal and coating materials) and temperature are examined.

In the past year, emphasis was placed on a detailed analysis and description of the Cs/SiC interface formation process.


Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (November 2005 – January 2006), Ajit K. Roy Apr 2006

Effect Of Silicon Content On The Corrosion Resistance And Radiation-Induced Embrittlement Of Materials For Advanced Heavy Liquid Metal Nuclear Systems: Quarterly Progress Report (November 2005 – January 2006), Ajit K. Roy

Transmutation Sciences Materials (TRP)

This task is intended to study the effect of Si content not only on the corrosion resistance but also on the radiation-induced embrittlement of martensitic stainless steels. The susceptibility of these alloys with different Si content to stress corrosion cracking, general corrosion and localized corrosion will be evaluated in the molten LBE and aqueous environments of different pH values using state-of-the-art testing techniques. Testing in the aqueous media is intended to develop baseline data for comparison purpose. Radiation-induced embrittlement of these alloys will initially be studied by irradiating the test specimens with bremmstrahlung gamma radiation from 20-40 MeV electron beams …