Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

Department of Math & Statistics Faculty Publications

Immune response

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Identifying Important Parameters In The Inflammatory Process With A Mathematical Model Of Immune Cell Influx And Macrophage Polarization, Marcella Torres, Jing Wang, Paul J. Yannie, Shobha Ghosh, Rebecca A. Segal, Angela M. Reynolds Jul 2019

Identifying Important Parameters In The Inflammatory Process With A Mathematical Model Of Immune Cell Influx And Macrophage Polarization, Marcella Torres, Jing Wang, Paul J. Yannie, Shobha Ghosh, Rebecca A. Segal, Angela M. Reynolds

Department of Math & Statistics Faculty Publications

In an inflammatory setting, macrophages can be polarized to an inflammatory M1 phenotype or to an anti-inflammatory M2 phenotype, as well as existing on a spectrum between these two extremes. Dysfunction of this phenotypic switch can result in a population imbalance that leads to chronic wounds or disease due to unresolved inflammation. Therapeutic interventions that target macrophages have therefore been proposed and implemented in diseases that feature chronic inflammation such as diabetes mellitus and atherosclerosis. We have developed a model for the sequential influx of immune cells in the peritoneal cavity in response to a bacterial stimulus that includes macrophage …


A Single-Parameter Model Of The Immune Response To Bacterial Invasion, Lester Caudill Jan 2013

A Single-Parameter Model Of The Immune Response To Bacterial Invasion, Lester Caudill

Department of Math & Statistics Faculty Publications

The human immune response to bacterial pathogens is a remarkably complex process, involving many different cell types, chemical signals, and extensive lines of communication. Mathematical models of this system have become increasingly high-dimensional and complicated, as researchers seek to capture many of the major dynamics. In this paper, we argue that, in some important instances, preference should be given to low-dimensional models of immune response, as opposed to their high-dimensional counterparts. One such model is analyzed and shown to reflect many of the key phenomenological properties of the immune response in humans. Notably, this model includes a single parameter values, …