Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Promiscuous Mating In Feral Pigs (Sus Scrofa) From Texas, Usa, Johanna Delgado-Acevedo, Angeline Zamorano, Randy W. Deyoung, Tyler A. Campbell, David G. Hewitt, David B. Long Jan 2010

Promiscuous Mating In Feral Pigs (Sus Scrofa) From Texas, Usa, Johanna Delgado-Acevedo, Angeline Zamorano, Randy W. Deyoung, Tyler A. Campbell, David G. Hewitt, David B. Long

USDA Wildlife Services: Staff Publications

Context. Feral pigs represent a significant threat to agriculture and ecosystems and are disease reservoirs for pathogens affecting humans, livestock and other wildlife. Information on the behavioural ecology of feral pigs might increase the efficiency and effectiveness of management strategies.

Aims. We assessed the frequency of promiscuous mating in relation to oestrous synchrony in feral pigs from southern Texas, USA, an agroecosystem with a widespread and well established population of feral pigs. An association between multiple paternity of single litters and synchrony of oestrous may indicate alternative mating strategies, such as mateguarding.

Methods. We collected gravid sows at …


Vowel Recognition From Continuous Articulatory Movements For Speaker-Dependent Applications, Jun Wang, Jordan R. Green, Ashok Samal, Tom D. Carrell Jan 2010

Vowel Recognition From Continuous Articulatory Movements For Speaker-Dependent Applications, Jun Wang, Jordan R. Green, Ashok Samal, Tom D. Carrell

Department of Special Education and Communication Disorders: Faculty Publications

A novel approach was developed to recognize vowels from continuous tongue and lip movements. Vowels were classified based on movement patterns (rather than on derived articulatory features, e.g., lip opening) using a machine learning approach. Recognition accuracy on a single-speaker dataset was 94.02% with a very short latency. Recognition accuracy was better for high vowels than for low vowels. This finding parallels previous empirical findings on tongue movements during vowels. The recognition algorithm was then used to drive an articulation-to-acoustics synthesizer. The synthesizer recognizes vowels from continuous input stream of tongue and lip movements and plays the corresponding sound samples …