Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

PDF

Mathematics, Physics, and Computer Science Faculty Articles and Research

Allosteric regulation

Publication Year

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

From Deep Mutational Mapping Of Allosteric Protein Landscapes To Deep Learning Of Allostery And Hidden Allosteric Sites: Zooming In On “Allosteric Intersection” Of Biochemical And Big Data Approaches, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta, Sian Xiao, Peng Tao Apr 2023

From Deep Mutational Mapping Of Allosteric Protein Landscapes To Deep Learning Of Allostery And Hidden Allosteric Sites: Zooming In On “Allosteric Intersection” Of Biochemical And Big Data Approaches, Gennady M. Verkhivker, Mohammed Alshahrani, Grace Gupta, Sian Xiao, Peng Tao

Mathematics, Physics, and Computer Science Faculty Articles and Research

The recent advances in artificial intelligence (AI) and machine learning have driven the design of new expert systems and automated workflows that are able to model complex chemical and biological phenomena. In recent years, machine learning approaches have been developed and actively deployed to facilitate computational and experimental studies of protein dynamics and allosteric mechanisms. In this review, we discuss in detail new developments along two major directions of allosteric research through the lens of data-intensive biochemical approaches and AI-based computational methods. Despite considerable progress in applications of AI methods for protein structure and dynamics studies, the intersection between allosteric …


Computational Analysis Of Protein Stability And Allosteric Interaction Networks In Distinct Conformational Forms Of The Sars Cov 2 Spike D614g Mutant: Reconciling Functional Mechanisms Through Allosteric Model Of Spike Regulation, Gennady M. Verkhivker, Steve Agajanian, Deniz Oztas, Grace Gupta Jun 2021

Computational Analysis Of Protein Stability And Allosteric Interaction Networks In Distinct Conformational Forms Of The Sars Cov 2 Spike D614g Mutant: Reconciling Functional Mechanisms Through Allosteric Model Of Spike Regulation, Gennady M. Verkhivker, Steve Agajanian, Deniz Oztas, Grace Gupta

Mathematics, Physics, and Computer Science Faculty Articles and Research

In this study, we used an integrative computational approach to examine molecular mechanisms underlying functional effects of the D614G mutation by exploring atomistic modeling of the SARS-CoV-2 spike proteins as allosteric regulatory machines. We combined coarse-grained simulations, protein stability and dynamic fluctuation communication analysis with network-based community analysis to examine structures of the native and mutant SARS-CoV-2 spike proteins in different functional states. Through distance fluctuations communication analysis, we probed stability and allosteric communication propensities of protein residues in the native and mutant SARS-CoV-2 spike proteins, providing evidence that the D614G mutation can enhance long-range signaling of the allosteric spike …


Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker Nov 2017

Ensemble-Based Modeling And Rigidity Decomposition Of Allosteric Interaction Networks And Communication Pathways In Cyclin-Dependent Kinases: Differentiating Kinase Clients Of The Hsp90-Cdc37 Chaperone, Gabrielle Stetz, Amanda Tse, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

The overarching goal of delineating molecular principles underlying differentiation of protein kinase clients and chaperone-based modulation of kinase activity is fundamental to understanding activity of many oncogenic kinases that require chaperoning of Hsp70 and Hsp90 systems to attain a functionally competent active form. Despite structural similarities and common activation mechanisms shared by cyclin-dependent kinase (CDK) proteins, members of this family can exhibit vastly different chaperone preferences. The molecular determinants underlying chaperone dependencies of protein kinases are not fully understood as structurally similar kinases may often elicit distinct regulatory responses to the chaperone. The regulatory divergences observed for members of CDK …