Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Medicine and Health Sciences

PDF

Chapman University

2019

Deep learning

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

Identifying Depression In The National Health And Nutrition Examination Survey Data Using A Deep Learning Algorithm, Jihoon Oh, Kyongsik Yun, Uri Maoz, Tae-Suk Kim, Jeong-Ho Chae Jul 2019

Identifying Depression In The National Health And Nutrition Examination Survey Data Using A Deep Learning Algorithm, Jihoon Oh, Kyongsik Yun, Uri Maoz, Tae-Suk Kim, Jeong-Ho Chae

Psychology Faculty Articles and Research

Background

As depression is the leading cause of disability worldwide, large-scale surveys have been conducted to establish the occurrence and risk factors of depression. However, accurately estimating epidemiological factors leading up to depression has remained challenging. Deep-learning algorithms can be applied to assess the factors leading up to prevalence and clinical manifestations of depression.

Methods

Customized deep-neural-network and machine-learning classifiers were assessed using survey data from 19,725 participants from the NHANES database (from 1999 through 2014) and 4949 from the South Korea NHANES (K-NHANES) database in 2014.

Results

A deep-learning algorithm showed area under the receiver operating characteristic curve (AUCs) …


Integration Of Random Forest Classifiers And Deep Convolutional Neural Networks For Classification And Biomolecular Modeling Of Cancer Driver Mutations, Steve Agajanian, Odeyemi Oluyemi, Gennady M. Verkhivker Jun 2019

Integration Of Random Forest Classifiers And Deep Convolutional Neural Networks For Classification And Biomolecular Modeling Of Cancer Driver Mutations, Steve Agajanian, Odeyemi Oluyemi, Gennady M. Verkhivker

Mathematics, Physics, and Computer Science Faculty Articles and Research

Development of machine learning solutions for prediction of functional and clinical significance of cancer driver genes and mutations are paramount in modern biomedical research and have gained a significant momentum in a recent decade. In this work, we integrate different machine learning approaches, including tree based methods, random forest and gradient boosted tree (GBT) classifiers along with deep convolutional neural networks (CNN) for prediction of cancer driver mutations in the genomic datasets. The feasibility of CNN in using raw nucleotide sequences for classification of cancer driver mutations was initially explored by employing label encoding, one hot encoding, and embedding to …