Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong Aug 2019

Computational Studies Of Thermal Properties And Desalination Performance Of Low-Dimensional Materials, Yang Hong

Department of Chemistry: Dissertations, Theses, and Student Research

During the last 30 years, microelectronic devices have been continuously designed and developed with smaller size and yet more functionalities. Today, hundreds of millions of transistors and complementary metal-oxide-semiconductor cells can be designed and integrated on a single microchip through 3D packaging and chip stacking technology. A large amount of heat will be generated in a limited space during the operation of microchips. Moreover, there is a high possibility of hot spots due to non-uniform integrated circuit design patterns as some core parts of a microchip work harder than other memory parts. This issue becomes acute as stacked microchips get …


Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller May 2019

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Graduate Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and a …


Direct Polymer Grafting As A Method Of Maintaining The Mechanical Properties Of Cellulose Nanocrystals In The Presence Of Moisture, Mary Elizabeth Breen-Lyles Jan 2019

Direct Polymer Grafting As A Method Of Maintaining The Mechanical Properties Of Cellulose Nanocrystals In The Presence Of Moisture, Mary Elizabeth Breen-Lyles

Graduate Research Theses & Dissertations

Cellulose nanocrystals (CNCs) are a distinctive nanomaterial derived from cellulose, the most abundant natural polymer on Earth, and the primary reinforcing structural component of cellulose fibrils found within the plant cell wall. These nanocrystals exhibit mechanical properties comparable to synthetic aramid fibers but are advantageous as they are biodegradable, renewable, and can be produced sustainably as they are predominantly extracted from naturally occurring cellulosic materials. These qualities make it a sustainable, highly renewable and environmentally friendly material to be used in place of synthetic materials in a variety of applications. With their high surface area to volume ratio, low level …