Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Physical Sciences and Mathematics

Jet Noise Reduction: A Fresh Start, Christopher K. Tam, Fang Q. Hu Jan 2023

Jet Noise Reduction: A Fresh Start, Christopher K. Tam, Fang Q. Hu

Mathematics & Statistics Faculty Publications

Attempts to reduce jet noise began some 70 years ago. In the literature, there have been many publications written on this topic. By now, it is common knowledge that jet noise consists of a number of components. They possess different spectral and radiation characteristics and are generated by different mechanisms. It appears then that one may aim at the suppression of the noise of a single component instead of trying to reduce jet noise overall. The objective of the present project is to reduce large turbulence structures noise. It is the most dominant noise component radiating in the downstream direction. …


Fluted Films, Nathan B. Spiers, Mohammad M. Mansoor, Jesse Belden, Randy Craig Hurd, Zhao Pan, Tadd T. Truscott Oct 2018

Fluted Films, Nathan B. Spiers, Mohammad M. Mansoor, Jesse Belden, Randy Craig Hurd, Zhao Pan, Tadd T. Truscott

Mechanical and Aerospace Engineering Faculty Publications

This paper is associated with a poster winner of a 2017 APS/DFD Milton van Dyke Award for work presented at the DFD Gallery of Fluid Motion. The original poster is available from the Gallery of Fluid Motion, https://doi.org/10.1103/APS.DFD.2017.GFM.P0030


Complex Capillary Fluidic Phenomena For Passive Control Of Liquids In Low-Gravity Environments, Logan Torres Jan 2016

Complex Capillary Fluidic Phenomena For Passive Control Of Liquids In Low-Gravity Environments, Logan Torres

Undergraduate Research & Mentoring Program

In an effort to further apply the recent results of puddle jumping research, we seek to expand the oblique droplet impact studies of others by exploiting large liquid droplets in the near weightless environment of a drop tower. By using the spontaneous puddle jump mechanism, droplets of volumes 1 mL ≤ V ≤ 3 mL with corresponding Weber numbers of We ≈ 1 are impinged on surfaces inclined in the range 40° ≤ α ≤ 80° (measured from the horizontal plane). Impact surface wetting characteristics exhibit static contact angles θstatic = 165 ± 5°. All impacts result in complete rebound. …


Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello Jan 2009

Drag Reduction In Turbulent Flows Over Micropatterned Superhydrophobic Surfaces, Robert J. Daniello

Masters Theses 1911 - February 2014

Periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide drag reduction in the laminar flow regime, have been demonstrated capable of reducing drag in the turbulent flow regime as well. Superhydrophobic surfaces contain micro or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to skin friction drag reductions approaching 50%. At a given Reynolds number, drag reduction was found to increase with increasing feature size and spacing, as in …


Nonaxisymmetric Stokes Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert Jan 2009

Nonaxisymmetric Stokes Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert

Articles

We study the fully three-dimensional Stokes flow within a geometry consisting of two infinite cones with coincident apices. The Stokes approximation is valid near the apex and we consider the dominant flow features as it is approached. The cones are assumed to be stationary and the flow to be driven by an arbitrary far-field disturbance. We express the flow quantities in terms of eigenfunction expansions and allow for the first time for nonaxisymmetric flow regimes through an azimuthal wave number. The eigenvalue problem is solved numerically for successive wave numbers. Both real and complex sequences of eigenvalues are found, their …


Slow Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert Jan 2007

Slow Flow Between Concentric Cones, O. Hall, C. P. Hills, A. D. Gilbert

Articles

This paper considers the low-Reynolds-number flow of an incompressible fluid contained in the gap between two coaxial cones with coincident apices and bounded by a spherical lid. The two cones and the lid are allowed to rotate independently about their common axis, generating a swirling motion. The swirl induces a secondary, meridional circulation through inertial effects. For specific configurations complex eigenmodes representing an infinite sequence of eddies, analogous to those found in two-dimensional corner flows and some three-dimensional geometries, form a component of this secondary circulation. When the cones rotate these eigenmodes, arising from the geometry, compete with the forced …


Viscoelastic Flow In Rotating Curved Pipes, Yitung Chen, Huajun Chen, Jinsuo Zhang, Benzhao Zhang Aug 2006

Viscoelastic Flow In Rotating Curved Pipes, Yitung Chen, Huajun Chen, Jinsuo Zhang, Benzhao Zhang

Mechanical Engineering Faculty Research

Fully developed viscoelastic flows in rotating curved pipes with circular cross section are investigated theoretically and numerically employing the Oldroyd-B fluid model. Based on Dean’s approximation, a perturbation solution up to the secondary order is obtained. The governing equations are also solved numerically by the finite volume method. The theoretical and numerical solutions agree with each other very well. The results indicate that the rotation, as well as the curvature and elasticity, plays an important role in affecting the friction factor, the secondary flow pattern and intensity. The co-rotation enhances effects of curvature and elasticity on the secondary flow. For …


Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic: Quarterly Progress Report (July 1 – Sept. 30, 2004), Yingtao Jiang, Bingmei Fu Sep 2004

Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic: Quarterly Progress Report (July 1 – Sept. 30, 2004), Yingtao Jiang, Bingmei Fu

Transmutation Sciences Materials (TRP)

Dr. Jiang Ma and Mr. Xiaolong Wu worked in LANL between July 1 and Sept. 15 to conduct the experiment. Test of the corrosion of different materials in LBE was performed. The influence of the process of gas introduction to the LBE was studied. Data analysis work was performed based on accumulated data. In the same time, progress has been made in the simulation for transport in oxygen mixing, and one paper was presented in a conference. Another paper was composed and submitted to IEEE International Symposium of Circuits and Systems for the track Chemical Sensors. Preparation of a paper …


Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic: Quarterly Progress Report (Aug. 01 – Oct. 31, 2002), Yingtao Jiang, Bingmei Fu, Woosoon Yim Oct 2002

Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic: Quarterly Progress Report (Aug. 01 – Oct. 31, 2002), Yingtao Jiang, Bingmei Fu, Woosoon Yim

Transmutation Sciences Materials (TRP)

After two month intensive work in LANL, some preliminary sensor calibration curves have been obtained. Further data analysis shall be performed to assess the theoretical and measured data. Also, a new experimental apparatus shall be designed and located in UNLV to continue the left work.

Technical Progress:

• A set of calibration curves of voltage vs. temperature ranging from 3000C to 5000C under various oxygen concentrations in liquid LBE for the YSZ oxygen sensor has been obtained and has been reported in one paper.

• A meeting with LBE committee and other faculty members in AAA …


Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic: Quarterly Progress Report (May 01 – July 31, 2002), Yingtao Jiang, Bingmei Fu, Woosoon Yim Jul 2002

Developing A Sensing System For The Measurement Of Oxygen Concentration In Liquid Pb-Bi Eutectic: Quarterly Progress Report (May 01 – July 31, 2002), Yingtao Jiang, Bingmei Fu, Woosoon Yim

Transmutation Sciences Materials (TRP)

Accurate measurement of the oxygen concentration in liquid Lead-Bismuth Eutectic (LBE) cooling system is critical in the active control of the corrosion at the interface between LBE and the stainless steel of transport tubes. Currently, LANL (Los Alamos National Laboratory) scientists have employed an automobile-style YSZ (Yttria Stabilized Zirconia) oxygen sensor unit to measure oxygen levels in an engineeringscaled LBE test system. Although the theoretical model for calculating oxygen concentration based on voltage measurement of YSZ sensor in static conditions is well understood, there is an urgent and strong need to obtain a complete set of calibration curves for YSZ …


Flow Patterns In A Two-Roll Mill, Christopher Hills Jan 2002

Flow Patterns In A Two-Roll Mill, Christopher Hills

Articles

The two-dimensional flow of a Newtonian fluid in a rectangular box that contains two disjoint, independently-rotating, circular boundaries is studied. The flow field for this two-roll mill is determined numerically using a finite-difference scheme over a Cartesian grid with variable horizontal and vertical spacing to accommodate satisfactorily the circular boundaries. To make the streamfunction numerically determinate we insist that the pressure field is everywhere single-valued. The physical character, streamline topology and transitions of the flow are discussed for a range of geometries, rotation rates and Reynolds numbers in the underlying seven-parameter space. An account of a preliminary experimental study of …