Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Physical Sciences and Mathematics

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim Nov 2023

Impact Of Silicon Ion Irradiation On Aluminum Nitride-Transduced Microelectromechanical Resonators, David D. Lynes, Joshua Young, Eric Lang, Hengky Chandrahalim

Faculty Publications

Microelectromechanical systems (MEMS) resonators use is widespread, from electronic filters and oscillators to physical sensors such as accelerometers and gyroscopes. These devices' ubiquity, small size, and low power consumption make them ideal for use in systems such as CubeSats, micro aerial vehicles, autonomous underwater vehicles, and micro-robots operating in radiation environments. Radiation's interaction with materials manifests as atomic displacement and ionization, resulting in mechanical and electronic property changes, photocurrents, and charge buildup. This study examines silicon (Si) ion irradiation's interaction with piezoelectrically transduced MEMS resonators. Furthermore, the effect of adding a dielectric silicon oxide (SiO2) thin film is …


Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim Apr 2023

Optical Fiber Tip Micro Anemometer, Jeremiah C. Williams, Hengky Chandrahalim

AFIT Patents

A passive microscopic flow sensor includes a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fiber. The three-dimensional microscopic optical structure includes a post attached off-center to and extending longitudinally from the cleaved tip of the optical fiber. A rotor of the three-dimensional microscopic optical structure is received for rotation on the post. The rotor has more than one blade. Each blade has a reflective undersurface that reflects a light signal back through the optical fiber when center aligned with the optical fiber, the blades of the rotor shaped to rotate at a rate related to …


Thermo-Fluidic Transport Process In A Novel M-Shaped Cavity Packed With Non-Darcian Porous Medium And Hybrid Nanofluid: Application Of Artificial Neural Network (Ann), Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Dilip Kumar Gayen, Rama S. R. Gorla, Ali J. Chamkha Mar 2022

Thermo-Fluidic Transport Process In A Novel M-Shaped Cavity Packed With Non-Darcian Porous Medium And Hybrid Nanofluid: Application Of Artificial Neural Network (Ann), Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Dilip Kumar Gayen, Rama S. R. Gorla, Ali J. Chamkha

Faculty Publications

In this work, an attempt has been made to explore numerically the thermo-fluidic transport process in a novel M-shaped enclosure filled with permeable material along with Al2O3-Cu hybrid nanoparticles suspended in water under the influence of a horizontal magnetizing field. To exercise the influence of geometric parameters, a classical trapezoidal cavity is modified with an inverted triangle at the top to construct an M-shaped cavity. The cavity is heated isothermally from the bottom and cooled from the top, whereas the inclined sidewalls are insulated. The role of geometric parameters on the thermal performance is scrutinized thoroughly …


Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Dec 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith Mar 2021

Temperature-Immune Self-Referencing Fabry–Pérot Cavity Sensors, Hengky Chandrahalim, Jonathan W. Smith

AFIT Patents

A passive microscopic Fabry-Pérot Interferometer (FPI) sensor an optical fiber a three-dimensional microscopic optical structure formed on a cleaved tip of an optical fighter that reflects a light signal back through the optical fiber. The reflected light is altered by refractive index changes in the three-dimensional structure that is subject to at least one of: (i) thermal radiation; and (ii) volatile organic compounds.


Fracture Toughness And Fatigue Crack Growth Rate Characterization Of Inconel 718 Formed By Laser Powder Bed Fusion, Charles C. Hohnbaum Mar 2019

Fracture Toughness And Fatigue Crack Growth Rate Characterization Of Inconel 718 Formed By Laser Powder Bed Fusion, Charles C. Hohnbaum

Theses and Dissertations

Continuing improvement in the field of AM of metals provides the opportunity for direct fabrication of aerospace parts. AM was once used in large part for rapid prototyping but improvements in technology and increases in the knowledge base of AM materials has provided the opportunity for manufacture of AM parts for operational use. The ability to create low numbers of unique parts without having to invest in expensive tooling provides great economic incentive to utilize this technique. IN718 is the most common high temperature alloy used in the aerospace industry and lends itself readily to formation by LPBF. The superior …


Examination Of Flow Dynamics And Passive Cooling In An Ultra Compact Combustor, Tylor C. Rathsack Mar 2019

Examination Of Flow Dynamics And Passive Cooling In An Ultra Compact Combustor, Tylor C. Rathsack

Theses and Dissertations

The Ultra Compact Combustor (UCC) promises to greatly reduce the size of a gas turbine engine’s combustor by altering the manner in which fuel is burnt. Differing from the common axial flow combustor, the UCC utilizes a rotating flow, coaxial to the engine’s primary axis, in an outboard circumferential cavity as the primary combustion zone. The present study investigates two key UCC facets required to further this combustor design. The first area of investigation is cooling of the Hybrid Guide Vane (HGV). This UCC specific hardware acts as a combustor center body that alters the exit flow angle and acts …


Process Parameter Development Of Additively Manufactured Af9628 Weapons Steel, Erin M. Hager Mar 2019

Process Parameter Development Of Additively Manufactured Af9628 Weapons Steel, Erin M. Hager

Theses and Dissertations

The manufacture of components in Additive Manufacturing processes is limited by the range of materials available. Qualification of materials for Additive Manufacturing is time intensive, and is often specific to a single type of machine. In this study, an approach to selecting power, speed, and hatch spacing values for a newly powderized material, AF9628 weapons steel, is described that results in highly dense (>99.9%) parts on an MLab 200R Cusing. Initial power and speed values used in a weld track study were selected based on a survey of parameters used on similar materials, with a focus on the energy …


Method For Determining Time-Resolved Heat Transfer Coefficient And Adiabatic Effectiveness Waveforms With Unsteady Film Cooling, James L. Rutledge, Jonathan F. Mccall Apr 2016

Method For Determining Time-Resolved Heat Transfer Coefficient And Adiabatic Effectiveness Waveforms With Unsteady Film Cooling, James L. Rutledge, Jonathan F. Mccall

AFIT Patents

A new method for determining heat transfer coefficient (h) and adiabatic effectiveness (η) waveforms h(t) and η(t) from a single test uses a novel inverse heat transfer methodology to use surface temperature histories obtained using prior art approaches to approximate the h(t) and η(t) waveforms. The method best curve fits the data to a pair of truncated Fourier series.


System And Method For Identifying Electrical Properties Of Integrate Circuits, Mary Y. Lanzerotti Jan 2016

System And Method For Identifying Electrical Properties Of Integrate Circuits, Mary Y. Lanzerotti

AFIT Patents

A new method for displaying electrical properties for integrated circuit (IC) layout designs provides for improved human visualization of those properties and comparison of as designed layout design parameters to as specified layout design parameters and to as manufactured layout parameters. The method starts with a circuitry as designed layout in a first digital format, extracts values for electrical properties from that circuitry as designed layout then annotates those values back into the first digital format. The annotated circuitry as designed layout is then converted from the first digital format to a second digital format that can be converted to …


A Method To Develop Neck Injury Criteria To Aid Design And Test Of Escape Systems Incorporating Helmet Mounted Displays, Jeffrey C. Parr Sep 2014

A Method To Develop Neck Injury Criteria To Aid Design And Test Of Escape Systems Incorporating Helmet Mounted Displays, Jeffrey C. Parr

Theses and Dissertations

HMDs are becoming common human-machine interface equipment in manned military flight, but introducing this equipment into the overall aircraft escape system poses new and significant system design, development, and test concerns. Although HMDs add capabilities, which improve operator performance, the increased capability is often accompanied by increased head supported mass. The increased mass can amplify the risk of pilot neck injury during ejection when compared to lighter legacy helmets. Currently no adequate USAF neck injury criteria exist to effectively guide the requirements, design, and test of escape systems for pilots with HMDs. This research effort presents a novel method to …


Numerical Investigation Of Pre-Detonator Geometries For Pde Applications, Robert T. Fievisohn Mar 2010

Numerical Investigation Of Pre-Detonator Geometries For Pde Applications, Robert T. Fievisohn

Theses and Dissertations

A parametric study was performed to determine optimal geometries to allow the successful transition of a detonation from a pre-detonator into the thrust tube of a pulse detonation engine. The study was performed using a two-dimensional Euler solver with progress variables to model the chemistry. The geometrical configurations for the simulations look at the effect of shock reflections, flow obstructions, and detonation diffraction to determine successful geometries. It was observed that there are success and failure rates associated with pre-detonators. These success rates appear to be determined by the transverse wave structure of a stably propagating detonation wave and must …


Performance Comparison Of Pb(Zr0.52Ti0.48)O3-Only And Pb(Zr0.52Ti0.48)O3-On-Silicon Resonators, Hengky Chandrahalim, Sunil A. Bhave, Ronald G. Polcawich, Jeff Pulskamp, Dan Judy, Roger Kaul, Madan Dubey Jan 2008

Performance Comparison Of Pb(Zr0.52Ti0.48)O3-Only And Pb(Zr0.52Ti0.48)O3-On-Silicon Resonators, Hengky Chandrahalim, Sunil A. Bhave, Ronald G. Polcawich, Jeff Pulskamp, Dan Judy, Roger Kaul, Madan Dubey

Faculty Publications

This paper provides a quantitative comparison and explores the design space of lead zirconium titanate (PZT)–only and PZT-on-silicon length-extensional mode resonators for incorporation into radio frequency microelectromechanical system filters and oscillators. We experimentally measured the correlation of motional impedance (RX) and quality factor (Q) with the resonators’ silicon layer thickness (tSi). For identical lateral dimensions and PZT-layer thicknesses (tPZT), the PZT-on-silicon resonator has higher resonant frequency (fC), higher Q (5100 versus 140), lower RX (51 Ω versus 205 Ω), and better linearity [third-order input intercept …


Control And Characterization Of Line-Addressable Micromirror Arrays, Harris J. Hall Mar 2001

Control And Characterization Of Line-Addressable Micromirror Arrays, Harris J. Hall

Theses and Dissertations

This research involved the design and implementation of a complete line-addressable control system for a 32x32 electrostatic piston-actuated micromirror array device. Line addressing reduces the number of control lines from N2 to 2N making it possible to design larger arrays and arrays with smaller element sizes. The system utilizes the electromechanical bi-stability of individual elements to bold arbitrary bi-stable phase patterns. The control system applies pulse width modulated (PWM) signals to the rows and columns of the micromirror array. Three modes of operation were conceived and built into the system. The first was the traditional signal scheme which requires …


Microelectromechanical Optical Beam Steering Systems, David M. Burns Dec 1997

Microelectromechanical Optical Beam Steering Systems, David M. Burns

Theses and Dissertations

The development of microelectromechanical systems (MEMS) has matured to the point where the fabrication of micron sized devices is feasible. State of the art MEMS construction processes now support the fabrication of novel optical devices that could not previously be built. This dissertation reports on the development of innovative micro optical devices such as Variable Blaze Gratings (VBGs) using state of the art MEMS construction processes. The principle application of the micro optical devices described in this dissertation is steering optical beams; however other applications such as spectral analysis are identified. Specific optical beam steering systems developed and characterized in …


Modeling And Simulation Of Optical Characteristics Of Microelectromechanical Mirror Arrays, Peter C. Roberts Dec 1996

Modeling And Simulation Of Optical Characteristics Of Microelectromechanical Mirror Arrays, Peter C. Roberts

Theses and Dissertations

MEMS (Micro-Electro-Mechanical Systems) micromirror devices can be used to control the phase of a propagating light wavefront, and in particular to correct aberrations that may be present in the wavefront, due to either atmospheric turbulence or any other type of fixed or time and space varying aberrations. In order to shorten the design cycle of MEMS micromirror devices, computer software is developed to create, from MEMS micromirror device design data, a numerical model of the MEMS device. The model is then used to compute the far field diffraction pattern of a wavefront reflected from the device, and to predict the …


Demonstrating Optical Aberration Correction With A Mems Micro-Mirror Device, Shaun R. Hick Dec 1996

Demonstrating Optical Aberration Correction With A Mems Micro-Mirror Device, Shaun R. Hick

Theses and Dissertations

This research conducted the first demonstrated use of a micro-electro-mechanical structure (MEMS) mirror array to correct a static optical aberration. A well-developed technique in adaptive optics imaging systems uses a deformable mirror to reflect the incident wave front to the imaging stage of the system. By matching the surface of the deformable mirror to the shape of the wave front phase distortion, the reflected wave front will be less aberrated before it is imaged. Typical adaptive optics systems use piezo-electric actuated deformable mirrors. This research used an electrostatically actuated, segmented mirror array, constructed by standard MEMS fabrication techniques, to investigate …


Artificial Cochlea Design Using Micro-Electro-Mechanical Systems, George C. Dalton Ii Dec 1996

Artificial Cochlea Design Using Micro-Electro-Mechanical Systems, George C. Dalton Ii

Theses and Dissertations

The use of Micro-Electro-Mechanical Systems (MEMS) in the design of an artificial cochlea is investigated in depth. Interdigitated finger (comb), cantilever, bridge, and mirror resonators are presented as possible devices used to implement the artificial cochlea. These resonators are demonstrated to be extremely high Q devices, capable of being tuned with a simple DC bias. This suggests a possible change to existing cochlea models that claim highly complex AC feedback as being responsible for changes in the damping of the basilar membrane. The new cochlea model presented here, using MEMS to approximate the tuning of the basilar membrane, may be …


Design, Fabrication And Characterization Of Micro Opto-Electro-Mechanical Systems, Darren E. Sene Dec 1995

Design, Fabrication And Characterization Of Micro Opto-Electro-Mechanical Systems, Darren E. Sene

Theses and Dissertations

Several micro-opto-electro-mechanical structures were designed using the Multi-User MEMS Process (MUMPS). Specific design techniques were investigated for improving the capabilities of elevating flip up structures. The integration of several flip up microoptical structures into a microoptical system was explored with emphasis on the development of a microinterferometer. The thermal effects on the Modulus of Elasticity were determined by detecting the resonant frequency for a square Flexure Beam Micromirror Device. The resonance of the device was found to match theory to within 0.1 % and the Modulus of Elasticity was found to decrease by 0.041 GPa/K from 290 to 450 K. …