Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Power In Pairs: Assessing The Statistical Value Of Paired Samples In Tests For Differential Expression, John R. Stevens, Jennifer S. Herrick, Roger K. Wolff, Martha L. Slattery Dec 2018

Power In Pairs: Assessing The Statistical Value Of Paired Samples In Tests For Differential Expression, John R. Stevens, Jennifer S. Herrick, Roger K. Wolff, Martha L. Slattery

Mathematics and Statistics Faculty Publications

Background: When genomics researchers design a high-throughput study to test for differential expression, some biological systems and research questions provide opportunities to use paired samples from subjects, and researchers can plan for a certain proportion of subjects to have paired samples. We consider the effect of this paired samples proportion on the statistical power of the study, using characteristics of both count (RNA-Seq) and continuous (microarray) expression data from a colorectal cancer study.

Results: We demonstrate that a higher proportion of subjects with paired samples yields higher statistical power, for various total numbers of samples, and for various strengths of …


Molecular Targets Of 2,3,7,8-Tetrachlorodibenzo-P-Dioxin (Tcdd) Within The Zebrafish Ovary: Insights Into Tcdd-Induced Endocrine Disruption And Reproductive Toxicity, Tisha C. King Heiden, Craig Struble, Matthew L. Rise, Martin J. Hessner, Reinhold J. Hutz, Michael J. Carvan Iii Jan 2008

Molecular Targets Of 2,3,7,8-Tetrachlorodibenzo-P-Dioxin (Tcdd) Within The Zebrafish Ovary: Insights Into Tcdd-Induced Endocrine Disruption And Reproductive Toxicity, Tisha C. King Heiden, Craig Struble, Matthew L. Rise, Martin J. Hessner, Reinhold J. Hutz, Michael J. Carvan Iii

Mathematics, Statistics and Computer Science Faculty Research and Publications

TCDD is a reproductive toxicant and endocrine disruptor, yet the mechanisms by which it causes these reproductive alterations are not fully understood. In order to provide additional insight into the molecular mechanisms that underlie TCDD's reproductive toxicity, we assessed TCDD-induced transcriptional changes in the ovary as they relate to previously described impacts on serum estradiol concentrations and altered follicular development in zebrafish. In silico computational approaches were used to correlate candidate regulatory motifs with observed changes in gene expression. Our data suggest that TCDD inhibits follicle maturation via attenuated gonadotropin responsiveness and/or depressed estradiol biosynthesis, and that interference of estrogen-regulated …


Yeast Through The Ages: A Statistical Analysis Of Genetic Changes In Aging Yeast, Alison Wise '05, Johanna S. Hardin, Laura Hoopes Jan 2006

Yeast Through The Ages: A Statistical Analysis Of Genetic Changes In Aging Yeast, Alison Wise '05, Johanna S. Hardin, Laura Hoopes

Pomona Faculty Publications and Research

Microarray technology allows for the expression levels of thousands of genes in a cell to be measured simultaneously. The technology provides great potential in the fields of biology and medicine, as the analysis of data obtained from microarray experiments gives insight into the roles of specific genes and the associated changes across experimental conditions (e.g., aging, mutation, radiation therapy, drug dosage). The application of statistical tools to microarray data can help make sense of the experiment and thereby advance genetic, biological, and medical research. Likewise, microarrays provide an exciting means through which to explore statistical techniques.


A Platform-Independent Software Suite For Statistical Analysis Of High Dimensional Biology Data, David B. Allison, Jacob P. L. Brand, Jode W. Edwards, Gary L. Gadbury, Kyoungmi Kim, Tapan Mehta, Grier P. Page, Amit Patki, Vinodh Srinivasasainagendra, Prinal Trivedi, Jelai Wang, Stanislav O. Zakharkin Jan 2005

A Platform-Independent Software Suite For Statistical Analysis Of High Dimensional Biology Data, David B. Allison, Jacob P. L. Brand, Jode W. Edwards, Gary L. Gadbury, Kyoungmi Kim, Tapan Mehta, Grier P. Page, Amit Patki, Vinodh Srinivasasainagendra, Prinal Trivedi, Jelai Wang, Stanislav O. Zakharkin

Mathematics and Statistics Faculty Research & Creative Works

Many efforts in microarray data analysis are focused on providing tools and methods for the qualitative analysis of microarray data. HDBStat! (High-Dimensional Biology-Statistics) is a software package designed for analysis of high dimensional biology data such as microarray data. It was initially developed for the analysis of microarray gene expression data, but it can also be used for some applications in proteomics and other aspects of genomics. HDBStat! provides statisticians and biologists a flexible and easy-to-use interface to analyze complex microarray data using a variety of methods for data preprocessing, quality control analysis and hypothesis testing.


Evaluation Of Multiple Models To Distinguish Closely Related Forms Of Disease Using Dna Microarray Data: An Application To Multiple Myeloma, Johanna S. Hardin, Michael Waddell, C. David Page, Fenghuang Zhan, Bart Barlogie, John Shaughnessy, John J. Crowley Jan 2004

Evaluation Of Multiple Models To Distinguish Closely Related Forms Of Disease Using Dna Microarray Data: An Application To Multiple Myeloma, Johanna S. Hardin, Michael Waddell, C. David Page, Fenghuang Zhan, Bart Barlogie, John Shaughnessy, John J. Crowley

Pomona Faculty Publications and Research

Motivation: Standard laboratory classification of the plasma cell dyscrasia monoclonal gammopathy of undetermined significance (MGUS) and the overt plasma cell neoplasm multiple myeloma (MM) is quite accurate, yet, for the most part, biologically uninformative. Most, if not all, cancers are caused by inherited or acquired genetic mutations that manifest themselves in altered gene expression patterns in the clonally related cancer cells. Microarray technology allows for qualitative and quantitative measurements of the expression levels of thousands of genes simultaneously, and it has now been used both to classify cancers that are morphologically indistinguishable and to predict response to therapy. It is …