Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Mathematics

Mathematics and Statistics Faculty Publications and Presentations

Maxwell equations

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Breaking Spaces And Forms For The Dpg Method And Applications Including Maxwell Equations, Carsten Carstensen, Leszek Demkowicz, Jay Gopalakrishnan Aug 2016

Breaking Spaces And Forms For The Dpg Method And Applications Including Maxwell Equations, Carsten Carstensen, Leszek Demkowicz, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

Discontinuous Petrov Galerkin (DPG) methods are made easily implementable using `broken' test spaces, i.e., spaces of functions with no continuity constraints across mesh element interfaces. Broken spaces derivable from a standard exact sequence of first order (unbroken) Sobolev spaces are of particular interest. A characterization of interface spaces that connect the broken spaces to their unbroken counterparts is provided. Stability of certain formulations using the broken spaces can be derived from the stability of analogues that use unbroken spaces. This technique is used to provide a complete error analysis of DPG methods for Maxwell equations with perfect electric boundary conditions. …


A Mixed Method For Axisymmetric Div-Curl Systems, Dylan M. Copeland, Jay Gopalakrishnan, Joseph E. Pasciak Jan 2008

A Mixed Method For Axisymmetric Div-Curl Systems, Dylan M. Copeland, Jay Gopalakrishnan, Joseph E. Pasciak

Mathematics and Statistics Faculty Publications and Presentations

We present a mixed method for a three-dimensional axisymmetric div-curl system reduced to a two-dimensional computational domain via cylindrical coordinates. We show that when the meridian axisymmetric Maxwell problem is approximated by a mixed method using the lowest order Nédélec elements (for the vector variable) and linear elements (for the Lagrange multiplier), one obtains optimal error estimates in certain weighted Sobolev norms. The main ingredient of the analysis is a sequence of projectors in the weighted norms satisfying some commutativity properties.


Quasioptimality Of Some Spectral Mixed Methods, Jay Gopalakrishnan, Leszek Demkowicz Jan 2004

Quasioptimality Of Some Spectral Mixed Methods, Jay Gopalakrishnan, Leszek Demkowicz

Mathematics and Statistics Faculty Publications and Presentations

In this paper, we construct a sequence of projectors into certain polynomial spaces satisfying a commuting diagram property with norm bounds independent of the polynomial degree. Using the projectors, we obtain quasioptimality of some spectralmixed methods, including the Raviart–Thomas method and mixed formulations of Maxwell equations. We also prove some discrete Friedrichs type inequalities involving curl.


Analysis Of A Multigrid Algorithm For Time Harmonic Maxwell Equations, Jay Gopalakrishnan, Joseph E. Pasciak, Leszek Demkowicz Jan 2004

Analysis Of A Multigrid Algorithm For Time Harmonic Maxwell Equations, Jay Gopalakrishnan, Joseph E. Pasciak, Leszek Demkowicz

Mathematics and Statistics Faculty Publications and Presentations

This paper considers a multigrid algorithm suitable for efficient solution of indefinite linear systems arising from finite element discretization of time harmonic Maxwell equations. In particular, a "backslash" multigrid cycle is proven to converge at rates independent of refinement level if certain indefinite block smoothers are used. The method of analysis involves comparing the multigrid error reduction operator with that of a related positive definite multigrid operator. This idea has previously been used in multigrid analysis of indefinite second order elliptic problems. However, the Maxwell application involves a nonelliptic indefinite operator. With the help of a few new estimates, the …