Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Mathematics

Mathematics and Statistics Faculty Publications and Presentations

Approximation theory

Articles 1 - 7 of 7

Full-Text Articles in Physical Sciences and Mathematics

A Primal Dpg Method Without A First-Order Reformulation, L. Demkowicz, Jay Gopalakrishnan Oct 2013

A Primal Dpg Method Without A First-Order Reformulation, L. Demkowicz, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

We show that it is possible to apply the DPG methodology without reformulating a second-order boundary value problem into a first-order system, by considering the simple example of the Poisson equation. The result is a new weak formulation and a new DPG method for the Poisson equation, which has no numerical trace variable, but has a numerical flux approximation on the element interfaces, in addition to the primal interior variable.


Mixed Finite Element Approximation Of The Vector Laplacian With Dirichlet Boundary Conditions, Douglas N. Arnold, Richard S. Falk, Jay Gopalakrishnan Jan 2012

Mixed Finite Element Approximation Of The Vector Laplacian With Dirichlet Boundary Conditions, Douglas N. Arnold, Richard S. Falk, Jay Gopalakrishnan

Mathematics and Statistics Faculty Publications and Presentations

We consider the finite element solution of the vector Laplace equation on a domain in two dimensions. For various choices of boundary conditions, it is known that a mixed finite element method, in which the rotation of the solution is introduced as a second unknown, is advantageous, and appropriate choices of mixed finite element spaces lead to a stable, optimally convergent discretization. However, the theory that leads to these conclusions does not apply to the case of Dirichlet boundary conditions, in which both components of the solution vanish on the boundary. We show, by computational example, that indeed such mixed …


Polynomial Extension Operators. Part Iii, Leszek Demkowicz, Jay Gopalakrishnan, Joachim Schöberl Jan 2011

Polynomial Extension Operators. Part Iii, Leszek Demkowicz, Jay Gopalakrishnan, Joachim Schöberl

Mathematics and Statistics Faculty Publications and Presentations

In this concluding part of a series of papers on tetrahedral polynomial extension operators, the existence of a polynomial extension operator in the Sobolev space H(div) is proven constructively. Specifically, on any tetrahedron K, given a function w on the boundary ∂K that is a polynomial on each face, the extension operator applied to w gives a vector function whose components are polynomials of at most the same degree in the tetrahedron. The vector function is an extension in the sense that the trace of its normal component on the boundary ∂K coincides with w. Furthermore, the extension operator is …


Analysis Of Hdg Methods For Stokes Flow, Bernardo Cockburn, Jay Gopalakrishnan, Ngoc Cuong Nguyen, Jaume Peraire, Francisco-Javier Sayas Jan 2011

Analysis Of Hdg Methods For Stokes Flow, Bernardo Cockburn, Jay Gopalakrishnan, Ngoc Cuong Nguyen, Jaume Peraire, Francisco-Javier Sayas

Mathematics and Statistics Faculty Publications and Presentations

In this paper, we analyze a hybridizable discontinuous Galerkin method for numerically solving the Stokes equations. The method uses polynomials of degree $ k$ for all the components of the approximate solution of the gradient-velocity-pressure formulation. The novelty of the analysis is the use of a new projection tailored to the very structure of the numerical traces of the method. It renders the analysis of the projection of the errors very concise and allows us to see that the projection of the error in the velocity superconverges. As a consequence, we prove that the approximations of the velocity gradient, the …


Hybridization And Postprocessing Techniques For Mixed Eigenfunctions, Bernardo Cockburn, Jay Gopalakrishnan, F. Li, Ngoc Cuong Nguyen, Jaume Peraire Jan 2010

Hybridization And Postprocessing Techniques For Mixed Eigenfunctions, Bernardo Cockburn, Jay Gopalakrishnan, F. Li, Ngoc Cuong Nguyen, Jaume Peraire

Mathematics and Statistics Faculty Publications and Presentations

We introduce hybridization and postprocessing techniques for the Raviart–Thomas approximation of second-order elliptic eigenvalue problems. Hybridization reduces the Raviart–Thomas approximation to a condensed eigenproblem. The condensed eigenproblem is nonlinear, but smaller than the original mixed approximation. We derive multiple iterative algorithms for solving the condensed eigenproblem and examine their interrelationships and convergence rates. An element-by-element postprocessing technique to improve accuracy of computed eigenfunctions is also presented. We prove that a projection of the error in the eigenspace approximation by the mixed method (of any order) superconverges and that the postprocessed eigenfunction approximations converge faster for smooth eigenfunctions. Numerical experiments using …


A New Elasticity Element Made For Enforcing Weak Stress Symmetry, Bernardo Cockburn, Jay Gopalakrishnan, Johnny Guzmán Jan 2009

A New Elasticity Element Made For Enforcing Weak Stress Symmetry, Bernardo Cockburn, Jay Gopalakrishnan, Johnny Guzmán

Mathematics and Statistics Faculty Publications and Presentations

We introduce a new mixed method for linear elasticity. The novelty is a simplicial element for the approximate stress. For every positive integer k, the row-wise divergence of the element space spans the set of polynomials of total degree k. The degrees of freedom are suited to achieve continuity of the normal stresses. What makes the element distinctive is that its dimension is the smallest required for enforcing a weak symmetry condition on the approximate stress. This is achieved using certain "bubble matrices", which are special divergence-free matrix-valued polynomials. We prove that the approximation error is of order k + …


A Mixed Method For Axisymmetric Div-Curl Systems, Dylan M. Copeland, Jay Gopalakrishnan, Joseph E. Pasciak Jan 2008

A Mixed Method For Axisymmetric Div-Curl Systems, Dylan M. Copeland, Jay Gopalakrishnan, Joseph E. Pasciak

Mathematics and Statistics Faculty Publications and Presentations

We present a mixed method for a three-dimensional axisymmetric div-curl system reduced to a two-dimensional computational domain via cylindrical coordinates. We show that when the meridian axisymmetric Maxwell problem is approximated by a mixed method using the lowest order Nédélec elements (for the vector variable) and linear elements (for the Lagrange multiplier), one obtains optimal error estimates in certain weighted Sobolev norms. The main ingredient of the analysis is a sequence of projectors in the weighted norms satisfying some commutativity properties.