Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Computational Methods For Two-Phase Flow With Soluble Surfactant, Kuan Xu Aug 2010

Computational Methods For Two-Phase Flow With Soluble Surfactant, Kuan Xu

Dissertations

A mathematical model is formulated and solved for the two-phase flow of a viscous drop or inviscid bubble in an immiscible, viscous surrounding fluid in the zero Reynold's number or Stokes flow limit. A surfactant that is present on the interface is also soluble in the exterior fluid, and the drop is deformed by an imposed linear flow. The geometry is two-dimensional and Cartesian.

The dissolved surfactant is considered in the physically realistic limit of large bulk Péclet number. That is, it convects and diffuses as a passive scalar in the bulk flow where the ratio of its convection to …


A Numerical Study On The Propagation And Interaction Of Strongly Nonlinear Solitary Waves, Qiyi Zhou Aug 2010

A Numerical Study On The Propagation And Interaction Of Strongly Nonlinear Solitary Waves, Qiyi Zhou

Dissertations

We study numerically a strongly nonlinear long wave model for surface gravity waves propagating in both one and two horizontal dimensions. This model often referred to as the Su-Gardner or Green-Naghdi equations can be derived from the Euler equations under the assumption that the ratio between the characteristic wavelength and water depth is small, but no assumption on the wave amplitude is required. We first generalize the model to describe large amplitude one-dimensional solitary waves in the presence of background shear of constant vorticity. After computing the solitary wave solution of the strongly nonlinear model, the interaction between two solitary …


Modeling With Bivariate Geometric Distributions, Jing Li May 2010

Modeling With Bivariate Geometric Distributions, Jing Li

Dissertations

This dissertation studied systems with several components which were subject to different types of failures. Systems with two components having frequency counts in the domain of positive integers, and the survival time of each component following geometric or mixture geometric distribution can be classified into this category. Examples of such systems include twin engines of an airplane and the paired organs in a human body. It was found that such a system, using conditional arguments, can be characterized as multivariate geometric distributions. It was proved that these characterizations of the geometric models can be achieved using conditional probabilities, conditional failure …


Perturbed Spherical Objects In Acoustic And Fluid Flow Fields, Manmeet Kaur Jan 2010

Perturbed Spherical Objects In Acoustic And Fluid Flow Fields, Manmeet Kaur

Dissertations

In this study, the time averaged acoustic radiation force and drag on a small, nearly spherical object suspended freely in a stationary sound wave field in a compressible, low viscosity fluid is to be calculated. This problem has been solved for a spherical object, and it has many important engineering applications related to segregation and separation processes for particles in fluids such as water. Small but significant errors have occurred in the predicted behavior of the particles using the existing approximate solutions based on perfect spheres. The classical approach has been extended in this research to objects that deviate slightly …


Nonlinear Evolution Of Annular Layers And Liquid Threads In Electric Fields, Qiming Wang Jan 2010

Nonlinear Evolution Of Annular Layers And Liquid Threads In Electric Fields, Qiming Wang

Dissertations

The nonlinear dynamics of viscous perfectly conducting liquid jets or threads under the action of a radial electric field are studied theoretically and numerically here. The field is generated by a potential difference between the jet surface and a concentrically placed electrode of given radius. A long-wave nonlinear model that is used to predict the dynamics of the system and in particular to address the effect of the radial electric field on jet breakup is developed, Two canonical regimes are identified that depend on the size of the gap between the outer electrode and the unperturbed jet surface. For relatively …


Modeling And Quasi-Monte Carlo Simulation Of Risk In Credit Portfolios, Bo Ren Jan 2010

Modeling And Quasi-Monte Carlo Simulation Of Risk In Credit Portfolios, Bo Ren

Dissertations

Credit risk is the risk of losing contractually obligated cash flows promised by a counterparty such as a corporation, financial institution, or government due to default on its debt obligations. The need for accurate pricing and hedging of complex credit derivatives and for active management of large credit portfolios calls for an accurate assessment of the risk inherent in the underlying credit portfolios. An important challenge for modeling a credit portfolio is to capture the correlations within the credit portfolio. For very large and homogeneous portfolios, analytic and semi-analytic approaches can be used to derive limiting distributions. However, for portfolios …