Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

2020

Carbon dioxide

Articles 1 - 2 of 2

Full-Text Articles in Physical Sciences and Mathematics

A Model For The Anodic Carbonization Of Alkaline Polymer Electrolyte Fuel Cells, Qi-Hao Li, Ying-Ming Wang, Hua-Long Ma, Li Xiao, Gong-Wei Wang, Jun-Tao Lu, Lin Zhuang Oct 2020

A Model For The Anodic Carbonization Of Alkaline Polymer Electrolyte Fuel Cells, Qi-Hao Li, Ying-Ming Wang, Hua-Long Ma, Li Xiao, Gong-Wei Wang, Jun-Tao Lu, Lin Zhuang

Journal of Electrochemistry

The alkaline polymer electrolyte fuel cell (APEFC) has made appreciable progress in recent years but is still suffering performance loss during discharge with air as the oxidant. Several theories have been suggested to interpret the loss. However, efforts are still needed to reach a clear quantitative understanding. Based on the major experimental findings in combination with thermodynamics and kinetics of the reactions involved in the anode, this paper presents a model featuring layered carbonization in the anode and relevant grouped equations. The simulation results generated from the latter are compared with experiments, and possible principles to suppress the performance loss …


Recent Progress On Enhancing Effect Of Nanosized Metals For Electrochemical Co2 Reduction, Yu-Ning Zhang, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang Aug 2020

Recent Progress On Enhancing Effect Of Nanosized Metals For Electrochemical Co2 Reduction, Yu-Ning Zhang, Dong-Fang Niu, Shuo-Zhen Hu, Xin-Sheng Zhang

Journal of Electrochemistry

The electrochemical conversion of CO2 to chemical raw material for further utilization shows promising future to alleviate global warming and realize carbon cycle in nature, which is of great significance to the green chemistry and sustainable development. This review briefly introduces the advantages of CO2 electrochemical reduction (CO2ER) and its basic reaction principles, and summarizes the recent progress in a series of activity enhancement strategies based on nanosized metal catalysts. The influences of alloy effect, interface engineering, synergistic effect, surface defect engineering and support effect on the catalytic performance of nanosized metals for CO2ER …