Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Spray Printing Of Organic Semiconducting Single Crystals, Grigorios-Panagiotis Rigas, Marcia M. Payne, John E. Anthony, Peter N. Horton, Fernando A. Castro, Maxim Shkunov Nov 2016

Spray Printing Of Organic Semiconducting Single Crystals, Grigorios-Panagiotis Rigas, Marcia M. Payne, John E. Anthony, Peter N. Horton, Fernando A. Castro, Maxim Shkunov

Chemistry Faculty Publications

Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by …


Enhanced Metallic Properties Of Srruo3 Thin Films Via Kinetically Controlled Pulsed Laser Epitaxy, Justin K. Thompson, J. Nichols, S. Lee, S. Ryee, John H. Gruenewald, John G. Connell, Maryam Souri, J. M. Johnson, J. Hwang, M. J. Han, H. N. Lee, D. -W. Kim, Sung S. Ambrose Seo Oct 2016

Enhanced Metallic Properties Of Srruo3 Thin Films Via Kinetically Controlled Pulsed Laser Epitaxy, Justin K. Thompson, J. Nichols, S. Lee, S. Ryee, John H. Gruenewald, John G. Connell, Maryam Souri, J. M. Johnson, J. Hwang, M. J. Han, H. N. Lee, D. -W. Kim, Sung S. Ambrose Seo

Physics and Astronomy Faculty Publications

Metal electrodes are a universal element of all electronic devices. Conducting SrRuO3 (SRO) epitaxial thin films have been extensively used as electrodes in complex-oxide heterostructures due to good lattice mismatches with perovskite substrates. However, when compared to SRO single crystals, SRO thin films have shown reduced conductivity and Curie temperatures (TC), which can lead to higher Joule heating and energy loss in the devices. Here, we report that high-quality SRO thin films can be synthesized by controlling the plume dynamics and growth rate of pulsed laser epitaxy (PLE) with real-time optical spectroscopic monitoring. The SRO thin …


Simultaneous Metal-Insulator And Antiferromagnetic Transitions In Orthorhombic Perovskite Iridate Sr0.94Ir0.78O2.68 Single Crystals, Hao Zheng, Jsaminka Terzic, Feng Ye, X. G. Wan, D. Wang, Jinchen Wang, Xiaoping Wang, P. Schlottmann, Shujuan Yuan, Gang Cao Jun 2016

Simultaneous Metal-Insulator And Antiferromagnetic Transitions In Orthorhombic Perovskite Iridate Sr0.94Ir0.78O2.68 Single Crystals, Hao Zheng, Jsaminka Terzic, Feng Ye, X. G. Wan, D. Wang, Jinchen Wang, Xiaoping Wang, P. Schlottmann, Shujuan Yuan, Gang Cao

Center for Advanced Materials Faculty Publications

The orthorhombic perovskite SrIrO3 is a semimetal, an intriguing exception in iridates where the strong spin-orbit interaction coupled with electron correlations tends to impose an insulating state. We report results of our investigation of bulk single-crystal Sr0.94Ir0.78O2.68 or Ir-deficient, orthorhombic perovskite SrIrO3. It retains the same crystal structure as stoichiometric SrIrO3 but exhibits a sharp, simultaneous antiferromagnetic (AFM) and metal-insulator (MI) transition occurring in the basal-plane resistivity at 185 K. Above it, the basal-plane resistivity features an extended regime of almost linear temperature dependence up to 800 K but the strong …


The Anisotropy Of Hexagonal Close-Packed And Liquid Interface Free Energy Using Molecular Dynamics Simulations Based On Modified Embedded-Atom Method, Ebrahim Asadi, Mohsen Asle Zaeem Apr 2016

The Anisotropy Of Hexagonal Close-Packed And Liquid Interface Free Energy Using Molecular Dynamics Simulations Based On Modified Embedded-Atom Method, Ebrahim Asadi, Mohsen Asle Zaeem

Materials Science and Engineering Faculty Research & Creative Works

This work aims to comprehensively study the anisotropy of the hexagonal close-packed (HCP)-liquid interface free energy using molecular dynamics (MD) simulations based on the modified-embedded atom method (MEAM). As a case study, all the simulations are performed for Magnesium (Mg). The solid-liquid coexisting approach is used to accurately calculate the melting point and melting properties. Then, the capillary fluctuation method (CFM) is used to determine the HCP-liquid interface free energy (γ) and anisotropy parameters. In CFM, a continuous order parameter is employed to accurately locate the HCP-liquid interface location, and the HCP symmetry-adapted spherical harmonics are used to expand γ …