Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

2013

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 141

Full-Text Articles in Physical Sciences and Mathematics

Localized Corrosion Behavior Of Sensitized 304 Stainless Steel By Scanning Reference Electrode Technique, Chen-Qing Ye, Rong-Gang Hu, Rui-Qing Hou, Xiao-Ping Wang, Rong-Gui Du, Chang-Jian Lin Dec 2013

Localized Corrosion Behavior Of Sensitized 304 Stainless Steel By Scanning Reference Electrode Technique, Chen-Qing Ye, Rong-Gang Hu, Rui-Qing Hou, Xiao-Ping Wang, Rong-Gui Du, Chang-Jian Lin

Journal of Electrochemistry

Based on a home-built setup of scanning reference electrode technique, and combined with conventional electrochemical measurements, the localized corrosion behavior of sensitized 304 stainless steel (304ss) had been investigated in this work. The results showed that, the non-sensitized 304ss or 304ss sensitized at 550 oC was susceptible to pitting; while 304ss sensitized at 650 oC or 750 oC suffered severe intergranular corrosion in 10% FeCl3 solution.


Study On Hydrogen Bubble Template Fabrication Of Porous Biomaterials Coatings By Electrochemically Induced Deposition, Hui Wang, Chang-Jian Lin, Ren Hu, Ke-Qin Zhang, Hong-Ping Duan, Xiang Dong Dec 2013

Study On Hydrogen Bubble Template Fabrication Of Porous Biomaterials Coatings By Electrochemically Induced Deposition, Hui Wang, Chang-Jian Lin, Ren Hu, Ke-Qin Zhang, Hong-Ping Duan, Xiang Dong

Journal of Electrochemistry

So far, the pore architecture in biomaterials plays a critical role on the cell response and integration between the biomaterials and implanted environment. In this study, porous calcium phosphate (CaP) coatings and CaP/protein composite coatings have been successfully constructed on titanium substrate by using an electrochemically induced deposition technique. The shape, size and pliability of CaP crystals are controlled by electrolyte concentration, temperature, current density, time and protein additive in preparing process. In addition, the formation mechanism of the porous structure is discussed based on the “hydrogen bubble template” model. It demonstrates that the growth velocity of CaP crystals should …


Cmk-3/Sulfur Composite (CXSY) And Room-Temperature Na/S Battery, Qing Zhao, Yu-Xiang Hu, Kai Zhang, Li-Jiang Wang, Zhan-Liang Tao, Jun Chen Dec 2013

Cmk-3/Sulfur Composite (CXSY) And Room-Temperature Na/S Battery, Qing Zhao, Yu-Xiang Hu, Kai Zhang, Li-Jiang Wang, Zhan-Liang Tao, Jun Chen

Journal of Electrochemistry

A series of ordered mesoporous carbon (CMK-3)/sulfur composite (CxSy) with different sulfur contents were synthesized via a melt-diffusion method. XRD, Raman, BET, SEM, and TEM techniques were used to characterize the structure and morphology of the as-prepared composite. The electrochemical performance of CMK-3/sulfur composite as the electrode of Na/S battery was tested at room temperature. Cyclic voltammograms show that one obvious reduction peak was located at about 1.61V, which is corresponding to the formation of Na2Sx (x=2~5), while two oxidation peaks were displayed at about 1.82V and 1.95V, which are belonging to the …


Surface Composition Structure And Electrochemical Performance Of Aluminum Doped Lifepo4, Huai-Fang Shang, Wei-Feng Huang, Wang-Sheng Hu, Ding-Guo Xia, Zi-Yu Wu Dec 2013

Surface Composition Structure And Electrochemical Performance Of Aluminum Doped Lifepo4, Huai-Fang Shang, Wei-Feng Huang, Wang-Sheng Hu, Ding-Guo Xia, Zi-Yu Wu

Journal of Electrochemistry

Despite there are many successful reports about the preparation of electrode materials with surface coating for lithium ion batteries, the study in surface self-coating of cathode materials using segregation of doping elements and their electrochemical properties is still very rare. The LiFePO4 particles with rich-Al on the surface were synthesized by one step solvothermal route. TEM results demonstrated that the surface of the obtained LiFePO4 particles was well-covered by the amorphous coating. The soft X-ray absorption spectroscopy (XAS) and Auger electron spectroscopy (AES) component analyses revealed that the amorphous coating was composed of LiFe1-xAlxPO …


Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li Dec 2013

Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li

Journal of Electrochemistry

Dispersed spherical Fe3O4 nanoparticles were synthesized by a hydrothermal method. The influences of odecyl trimethyl ammonium bromide (DTAB) concentration on the morphology and particle size of the as-prepared Fe3O4 were studied. Electrochemical performance of the as-prepared sample as anode materials of lithium ion battery was investigated. It is found that the as-prepared sample exhibits superior rate performance and cycle performance. The nano-sized materials provide structural stability and favor the transfer of lithium ions.


Electrochemical Na-Storage Materials And Their Applications For Na-Ion Batteries, Jiang-Feng Qian, Xue-Ping Gao, Han-Xi Yang Dec 2013

Electrochemical Na-Storage Materials And Their Applications For Na-Ion Batteries, Jiang-Feng Qian, Xue-Ping Gao, Han-Xi Yang

Journal of Electrochemistry

Oncoming large scale electric energy storage (EES) requires battery systems not only to have sufficient storage capacity but also to be cost-effective and environmentally friendly. Li-ion batteries for widespread EES applications may be limited due to the constraint of global lithium resource. From the considerations of available resources and environmental impact, Na-ion batteries have potential advantages as next generation secondary batteries and an alternative to Li-ion batteries. However, in the present state of the art, the Na-storage cathodes reported so far are still deficient both in energy density and power capability, while the carbon and alloy anodes for Na-ion batteries …


Application Of Synchrotron Radiation Based Electrochemical In-Situ Techniques To Study Of Electrode Materials For Lithium-Ion Batteries, Zheng-Liang Gong, Wei Zhang, Dong-Ping Lv, Xiao-Gang Hao, Wen Wen, Zheng Jiang, Yong Yang Dec 2013

Application Of Synchrotron Radiation Based Electrochemical In-Situ Techniques To Study Of Electrode Materials For Lithium-Ion Batteries, Zheng-Liang Gong, Wei Zhang, Dong-Ping Lv, Xiao-Gang Hao, Wen Wen, Zheng Jiang, Yong Yang

Journal of Electrochemistry

Due to its merits of high brightness and high intensity, high level of polarization and wide tunability in energy, etc., synchrotron radiation technique provides an unique platform for analysis of the relationship among composition–structure–performance of materials for lithium ion batteries, especially for in-situ, real time dynamic investigation of the electrochemical reaction mechanism, aging process and failure mechanism during charge-discharge cycling. In this paper, we review the latest developments in application of synchrotron based electrochemical in-situ experimental methods to studies of lithium ion batteries. The paper mainly focuses on the application of electrochemical in-siu XRD and XAFS techniques to the investigations …


Preparation And Electrochemical Properties Of Amorphous Znsno3/C By Hydrothermally Carbonization Method, Guo-Qing Fang, Rui-Xue Zhang, Wei-Wei Liu, Bing-Bo Xia, Hong-Dan Sun, Hai-Bo Wang, Jing-Jing Wu, Shinko Kaneko, De-Cheng Li Dec 2013

Preparation And Electrochemical Properties Of Amorphous Znsno3/C By Hydrothermally Carbonization Method, Guo-Qing Fang, Rui-Xue Zhang, Wei-Wei Liu, Bing-Bo Xia, Hong-Dan Sun, Hai-Bo Wang, Jing-Jing Wu, Shinko Kaneko, De-Cheng Li

Journal of Electrochemistry

The amorphous ZnSnO3@C composite was synthesized via a simple glucose hydrothermal and subsequent carbonization approach. The structure, morphology and electrochemical property of the composite were characterized by XRD, TEM and electrochemical measurements. Compared to bare ZnSnO3, the ZnSnO3/C composite exhibited markedly enhanced lithium storage property and cycle performance, delivering a reversible capacity of 659 mAh·g-1 after 100 cycles at a current density of 100 mA·g-1.


An Investigation On The Solid Electrolyte Interphase Of Silicon Anode For Li-Ion Batteries Through Force Curve Method, Jie-Yun Zheng, Hao Zheng, Rui Wang, Hong Li, Li-Quan Chen Dec 2013

An Investigation On The Solid Electrolyte Interphase Of Silicon Anode For Li-Ion Batteries Through Force Curve Method, Jie-Yun Zheng, Hao Zheng, Rui Wang, Hong Li, Li-Quan Chen

Journal of Electrochemistry

Non-aqueous electrolyte has been widely used in commercial Li-ion batteries. Optimized choices are proceeding among the various types of salts and solvents in an effort to achieve higher performance of electrolyte. However, the electrolyte will be reduced in low potential and the reductive product will be deposited on the surface of anode to form a passivating layer, solid electrolyte interphase (SEI). Herein an atomic force microscopy (AFM) based method was introduced to study the structure and mechanical property of SEI on silicon thin film anode during the first cycle. Silicon has been known as the most potential candidate anode for …


Aqueous Solution-Evaporation Route Synthesis And Phase Structural Research Of The Li-Rich Cathode Li1.23Ni0.09Co0.12Mn0.56O2 By In-Situ Xrd, Chong-Heng Shen, Shou-Yu Shen, Zhou Lin, Xiao-Mei Zheng, Hang Su, Ling Huang, Jun-Tao Li, Shi-Gang Sun Dec 2013

Aqueous Solution-Evaporation Route Synthesis And Phase Structural Research Of The Li-Rich Cathode Li1.23Ni0.09Co0.12Mn0.56O2 By In-Situ Xrd, Chong-Heng Shen, Shou-Yu Shen, Zhou Lin, Xiao-Mei Zheng, Hang Su, Ling Huang, Jun-Tao Li, Shi-Gang Sun

Journal of Electrochemistry

The Li-rich Li1.23Ni0.09Co0.12Mn0.56O2 material was synthesized via aqueous solution-evaporation route. The structure and morphology of the material were characterized by means of XRD and SEM. The results indicated that the single particle of the product was polygonal with the size of 330 nm and the structure was layered solid solution with a certain amount of Li2MnO3. Electrochemical tests showed that the first discharge capacity of the Li-rich layered material was 250.8 mAh·g-1 at 0.1C,the capacity retention was 86.5% after 40 cycles. Through in-situ XRD study a …


Synthesis And Electrochemical Property Of Li2Fesio4/C Cathode Material By Solid State Method, Jiao-Li Sun, Zhi-Jiao Chen, Yi-Xiao Li, Hu Cheng Dec 2013

Synthesis And Electrochemical Property Of Li2Fesio4/C Cathode Material By Solid State Method, Jiao-Li Sun, Zhi-Jiao Chen, Yi-Xiao Li, Hu Cheng

Journal of Electrochemistry

Li2FeSiO4/C cathode material was synthesized using Li2SiO3 and FeC2O4 as raw materials by solid state method. The structure and morphology of the material were characterized by XRD and SEM. The electrochemical properties of the material were studied by constant-current cyclic testing. The results show that Li2FeSiO4/C has a good electrochemical performance. The first discharge capacity of Li2FeSiO4/C cathode material at 30oC reached 167 mAhg-1 when cycled at 10 mAg-1 between 1.5 and 4.8 V.


Preparation And Electrochemical Properties Of Flake-Like Liv3O8 By Soft Template Assisted Sol-Gel Method As Anode Material For Aqueous Li-Ion Battery, Shuai Tan, Dan Sun, Hai-Yan Wang, Tian-Li Hou, Zhong-Xing Xiao, You-Gen Tang Dec 2013

Preparation And Electrochemical Properties Of Flake-Like Liv3O8 By Soft Template Assisted Sol-Gel Method As Anode Material For Aqueous Li-Ion Battery, Shuai Tan, Dan Sun, Hai-Yan Wang, Tian-Li Hou, Zhong-Xing Xiao, You-Gen Tang

Journal of Electrochemistry

Anode material has become the key issue for restricting the development of aqueous lithium ion battery (ALIB). Flake-like LiV3O8 materials were synthesized by sol-gel method using sodium dodecyl benzene sulfonate (SDBS) as a template. The XRD and SEM results showed that as-prepared flake-like LiV3O8 was of high purity with monoclinic system and P21/m space group. LiMn2O4//Li2SO4//LiV3O8 ALIB was assembled and tested. As observed, the flake-like LiV3O8 here exhibited good high-rate performance and cycling stability. A high discharge capacity of 154 mAh.g-1 (based on the mass …


Synthesis And Electrochemical Performance Of Nano Licopo4 By Polyol Method, Fei Wang, Yang Jun Dec 2013

Synthesis And Electrochemical Performance Of Nano Licopo4 By Polyol Method, Fei Wang, Yang Jun

Journal of Electrochemistry

High potential LiCoPO4 cathode material was synthesized by polyol method. Carbon layer of ca. 3 nm thick was coated on the LiCoPO4 surfaces by chemical vapor deposition from methylbenzene. Crystalline structure, morphology and electrochemical performance of the sample were studied by XRD, SEM, TEM, CV and galvanostatic charge/discharge curve. The synthesized material via polyol method showed a pure phase of LiCoPO4. The LiCoPO4/C electrode delivered a high discharge capacity of 132 mAh·g-1 and maintained 78% of the initial capacity after 50 cycles at 0.1C rate. The two-step extraction/insertion behavior of Li+ in LiCoPO4/C …


Preparation Of The Particle Size Controllable Lifepo4/C And Its Electrochemical Profile Characterization, Ming-E Wang, Jing-Yuan Liu, Meng-Yan Hou, Yong-Yao Xia Dec 2013

Preparation Of The Particle Size Controllable Lifepo4/C And Its Electrochemical Profile Characterization, Ming-E Wang, Jing-Yuan Liu, Meng-Yan Hou, Yong-Yao Xia

Journal of Electrochemistry

We adopted an effective route to prepare the particle size controllable core-shell structure carbon-coated LiFePO4 from different sized FePO4 precursors, varying from 80 nm, 200 nm and 1 μm by an in situ polymerization method integrated with a surface modification technology. The discharge capacities of the three sized LiFePO4/C are, respectively, 162 mAh·g-1, 142 mAh·g-1 and 92 mAh·g-1 at 0.1C rate. The nano-sized LiFePO4-a/C (80 nm) delivers a discharge capacity as large as 100 mAh·g-1 even at 30C, while the macroscopic LiFePO4-c/C (1 μm) exhibits a much poorer discharge …


Biogenic Synthesis, Photocatalytic, And Photoelectrochemical Performance Of Ag–Zno Nanocomposite, S. A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho Dec 2013

Biogenic Synthesis, Photocatalytic, And Photoelectrochemical Performance Of Ag–Zno Nanocomposite, S. A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

The development of coupled photoactive materials (metal/semiconductor) has resulted in significant advancements in heterogeneous visible light photocatalysis. This work reports the novel biogenic synthesis of visible light active Ag–ZnO nanocomposite for photocatalysis and photoelectrode using an electrochemically active biofilm (EAB). The results showed that the EAB functioned as a biogenic reducing tool for the reduction of Ag+, thereby eliminating the need for conventional reducing agents. The as-prepared Ag–ZnO nanocomposite was characterized by X-ray diffraction, transmission electron microscopy, diffuse reflectance spectroscopy, photoluminescence spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic experiments showed that the Ag–ZnO nanocomposite possessed excellent visible light photocatalytic activity …


Impact Of Alkaline Doping And Reducing Conditions On Lafeo3, Geoffrey L. Beausoleil Ii Dec 2013

Impact Of Alkaline Doping And Reducing Conditions On Lafeo3, Geoffrey L. Beausoleil Ii

Geoffrey L Beausoleil II

Efficient and reliable materials for gas separation, syngas production, and hybrid nuclear power plants must be capable of reliably operating at a high-temperature range of 700-1000°C and under exposure to highly oxidizing and reducing conditions. Candidate materials for these applications include alkaline metal doped lanthanum ferrite.

In the first study, the impact of A site substitution by different alkaline metals on lanthanum ferrite (LMF, M=Ca, Sr, and Ba) was investigated. The study focused on thermal expansion near the Néel transition temperature and a magneto-elastic contribution to thermal expansion was identified for each sample. Iron oxidation, Fe3+ to Fe4+, was identified …


Electrochemical And Surface Compositional Studies On Uranium Dioxide, Mayuri Razdan Dec 2013

Electrochemical And Surface Compositional Studies On Uranium Dioxide, Mayuri Razdan

Electronic Thesis and Dissertation Repository

This thesis describes electrochemical and surface compositional studies performed on a number of simulated nuclear fuel (SIMFUEL) materials under conditions relevant to permanent disposal of spent nuclear fuel in a geologic repository. This is important since a number of critical issues have been identified in the event of waste container failure. The research performed was mainly focused in three areas: (i) the influence of low pH on the surface chemistry of UO2, since acidity could develop within corrosion product deposits and flaws in the fuel; (ii) the combined influence of dissolved H2 and H2O2 …


Applying Computational Methods To Interpret Experimental Results In Tribology And Enantioselective Catalysis, Michael Garvey Dec 2013

Applying Computational Methods To Interpret Experimental Results In Tribology And Enantioselective Catalysis, Michael Garvey

Theses and Dissertations

Computational methods are rapidly becoming a mainstay in the field of chemistry. Advances in computational methods (both theory and implementation), increasing availability of computational resources and the advancement of parallel computing are some of the major forces driving this trend.

It is now possible to perform density functional theory (DFT) calculations with chemical accuracy for model systems that can be interrogated experimentally. This allows computational methods to supplement or complement experimental methods. There are even cases where DFT calculations can give insight into processes and interactions that cannot be interrogated directly by current experimental methods.

This work presents several examples …


Monodentate, Bidentate And Photocrosslinkable Thiol Ligands For Improving Aqueous Biocompatible Quantum Dots, Hiroko Takeuchi Dec 2013

Monodentate, Bidentate And Photocrosslinkable Thiol Ligands For Improving Aqueous Biocompatible Quantum Dots, Hiroko Takeuchi

Graduate Theses and Dissertations

Water-soluble Quantum Dots (QDs) are highly sensitive fluorescent probes that are often used to study biological species. One of the most common ways to render QDs water-soluble for such applications is to apply hydrophilic thiolated ligands to the QD surface. However, these ligands are labile and can be easily exchanged on the QD surface, which can severely limit their application. As one way to overcome this limitation while maintaining a small colloidal size of QDs, we developed a method to stabilize hydrophilic thiolated ligands on the surface of QDs through the formation of a crosslinked shell using a photocrosslinking approach. …


Nanohub - Crystal Viewer 2.0, Kevin Margatan, Gerhard Klimeck Nov 2013

Nanohub - Crystal Viewer 2.0, Kevin Margatan, Gerhard Klimeck

Gerhard Klimeck

nanoHUB is an online compilation of tools for simulations. Equipped with 3-D simulations and a capability to solve very complex calculations, nanoHUB provides its users worldwide with various tools to help them finish their assignments. One of the tools available is called a Crystal Viewer Tool, an advanced crystal visualization tool. This tool allows users to generate various crystal types including their every single detail. Currently, a newer version, called Crystal Viewer 2.0, is being tested prior to its release. However, this tool is lacking some important features and a GUI that is not as user friendly as expected. The …


Next Generation Crystal Viewing Tool, Zach Schaffter, Gerhard Klimeck Nov 2013

Next Generation Crystal Viewing Tool, Zach Schaffter, Gerhard Klimeck

Gerhard Klimeck

The science and engineering community is limited when it comes to crystal viewing software tools. Each tool lacks in a different area such as customization of structures or visual output. Crystal Viewer 2.0 was created to have all of these features in one program. This one tool simulates virtually any crystal structure with any possible material. The vtkvis widget offers users advanced visual options not seen in any other crystal viewing software. In addition, the powerful engine behind Crystal Viewer 2.0, nanoelectronic modeling 5 or (NEMO5), performs intensive atomic calculations depending on user input. A graphical user interface, or GUI, …


Corrosion Behavior Of A High Strength Low Alloy Steel Under Hydrostatic Pressure In Deep Ocean, Hai-Jing Sun, Li Liu, Ying Li Oct 2013

Corrosion Behavior Of A High Strength Low Alloy Steel Under Hydrostatic Pressure In Deep Ocean, Hai-Jing Sun, Li Liu, Ying Li

Journal of Electrochemistry

The corrosion behavior of a high strength low alloy steel (HSLA steel) in 3.5% NaCl solution under hydrostatic pressure (HP) in deep ocean has been investigated by performing weight loss measurement, obtaining potentiodynamic polarization curve and emplying electrochemical impedance spectroscopy (EIS) using the set up for simulation of deep sea environment in laboratory. The results were compared with that at atmospheric pressure and the influence of HP was emphatically discussed. The results revealed identical corrosion mechanism for HSLA steel at 3.5 × 106 Pa and 1 × 105 Pa. Howevere, the development of such a corrosion process was remarkably accelerated …


An Investigation Of Photocatalytic Degradation Reactions Of Pollutants By Combination Of (Photo)Electrochemical Measurements, Wen-Hua Leng, Hong-Qiao Zhu Oct 2013

An Investigation Of Photocatalytic Degradation Reactions Of Pollutants By Combination Of (Photo)Electrochemical Measurements, Wen-Hua Leng, Hong-Qiao Zhu

Journal of Electrochemistry

Semiconductor photocatalysis plays a critical role in the environment protection and future energy development. (Photo)electrochemical measurements are powerful tools for studying the kinetics and mechanism of photocatalytic reactions, since photo-carriers, as reactants of photocatalytic reactions, are involved in the interfacial transfer and recombination of semiconductor/electrolyte interface. This review describes the part of our recent results regarding aqueous photocatalytic decontamination obtained by these methods, and the focus of future work in this field is suggested.


Corrosion Resistance Of Low Pressure Cold Sprayed Al Coating On Q235 Steel In Seawater, Xiang-Bo Li, Li-Kun Xu, Shan-Guang Qiu, Jia Wang, Guo-Sheng Huang, Cai-Chang Dong Oct 2013

Corrosion Resistance Of Low Pressure Cold Sprayed Al Coating On Q235 Steel In Seawater, Xiang-Bo Li, Li-Kun Xu, Shan-Guang Qiu, Jia Wang, Guo-Sheng Huang, Cai-Chang Dong

Journal of Electrochemistry

Taking aluminium (Al) powder mixed with 10% (by volume) of Al2O3 powder as raw materials, the Al coating was prepared on the Q235 carbon steel substrate using a portable low pressure cold spraying equipment. Through the measurements of the corrosion potential and potentiodynamic polarization, the electrochemical corrosion behavior of the low pressure cold sprayed Al coating in seawater was studied in comparison with those of the Al coatings deposited with high pressure cold spray and thermal spray processes. At the same time, the surface and cross-section morphologies of these coatings were observed with scanning electron microscope. The results showed that …


Preparation Of Benzoquinone From Phenol By Electrooxidation, Dong-Fang Niu, Cheng-Kai Yu, Xin-Sheng Zhang Oct 2013

Preparation Of Benzoquinone From Phenol By Electrooxidation, Dong-Fang Niu, Cheng-Kai Yu, Xin-Sheng Zhang

Journal of Electrochemistry

The benzoquinone was prepared from phenol by electrooxidation in an H-type cell with cation exchange membrane, in which lead plates were used both as an anode and a cathode, while H2SO4 was used as a supporting electrolyte. The effects of current density, concentration of sulphuric acid, concentrations of benzoquinone in electrolyte and extractant on the yields and efficiencies of electrolysis were investigated. Under the optimized conditions of current density being 4 A·dm-2, concentration of sulphuric acid 1 mol·L-1, passed charge 3.2 A·h, the yield and current efficiency of benzoquinone could reach 68% and …


Synthesis Of Pani/Nihcf Nanocomposite Particles And Eqcm Measurement Of Ion Exchange Properties In Solutions Containing Cd2+, Yu-Jiao Yang, Xiao-Gang Hao, Xu-Li Ma, Zhong-De Wang, Zhong-Lin Zhang, Nian-Chen Han Oct 2013

Synthesis Of Pani/Nihcf Nanocomposite Particles And Eqcm Measurement Of Ion Exchange Properties In Solutions Containing Cd2+, Yu-Jiao Yang, Xiao-Gang Hao, Xu-Li Ma, Zhong-De Wang, Zhong-Lin Zhang, Nian-Chen Han

Journal of Electrochemistry

The PANI/NiHCF nanocomposite particles were synthesized on the CNTs-modified Pt substrate by one-step co-polymerization using cyclic voltammetry. Electrochemical quartz crystal microbalance (EQCM) technique was adopted to investigate the polymerization process of the nanocomposite particles and the mechanism of ion exchange in aqueous solution containing Cd2+. The morphology and structure of the as-prepared composite particles were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), and Fourier transform infrared spectroscopy (FT-IR). Combined with cyclic voltammetry (CV) and energy dispersive spectroscopy (EDS), the electrochemical behavior and the mechanism of ion exchange were also investigated in electrolytes of Cd2+ …


Basic Principles And Applications Of Secm In Metal Corrosion, Fa-He Cao, Yan Xia, Wen-Juan Liu, Lin-Rong Chang, Jian-Qing Zhang Oct 2013

Basic Principles And Applications Of Secm In Metal Corrosion, Fa-He Cao, Yan Xia, Wen-Juan Liu, Lin-Rong Chang, Jian-Qing Zhang

Journal of Electrochemistry

Scanning electrochemical microscopy (SECM) is chemical microscopy with higher spatial resolution. After 24 years of development, SECM has been widely applied in mapping and kinetics study of heterogeneous electron transfer in localized processes at solid-liquid or liquid-liquid interfaces. The fundamentals and recent advances of SECM in corrosion applications are described, including SECM mapping and kinetics on localized corrosion of metal or coating. Research work of SECM in corrosion by our group is also introduced. Future applications of SECM in corrosion are highlighted.


Electrocatalytic Properties Of The Keggin-Type Co(Ii)-Substituted Heteropolyanion Pw11O39Co(Ii)(H2O)5-, Bin Wang, Chong-Tai Wang, Ying-Jie Hua, Jin-Yuan Liu, Liang-Fei Zheng Oct 2013

Electrocatalytic Properties Of The Keggin-Type Co(Ii)-Substituted Heteropolyanion Pw11O39Co(Ii)(H2O)5-, Bin Wang, Chong-Tai Wang, Ying-Jie Hua, Jin-Yuan Liu, Liang-Fei Zheng

Journal of Electrochemistry

The electrochemical properties of the Keggin-type Co(II)-substituted heteropolyanion PW11O39Co(II)(H2O)5- (PW11Co), as well as the electrocatalytic properties of PW11Co towards the anodic oxidations of H2O2 and CH3OH were studied using the electrochemical methods such as cyclic voltammetry and AC impedance spectroscopy in this paper. An electrocatalytic mechanism of PW11Co as an anodic medium was also proposed. It was found that PW11Co showed a pair of pseudo-reversible redox peaks at the potentials of 1.367 V/1.266 V, corresponding to the redox responses of …


A Comparative Study In Pretreatments Of Acid Chemical Wastewater By Electrochemical Oxidation And Ozonation, Han-Shui Liu, Su Yu, Shao-Ping Tong, Chun-An Ma Oct 2013

A Comparative Study In Pretreatments Of Acid Chemical Wastewater By Electrochemical Oxidation And Ozonation, Han-Shui Liu, Su Yu, Shao-Ping Tong, Chun-An Ma

Journal of Electrochemistry

Under the condition of keeping certain acidity, the pretreatment efficiency of an acid chemical wastewater (pH 0.85) by electrochemical oxidation was compared with that by ozonation. The results showed that the electrochemical oxidation pretreatment could obtain a better result than the ozonation at pH 0.85. After the addition of 2 g·L-1 NaCl and with the electrochemical oxidation pretreatment at 30 mA·cm-2, the removal rate of chemical oxygen demand (CODCr) reached 43.4%, and the value of biochemical oxygen demand/chemical oxygen demand (BOD5/CODCr) also increased from 0.034 to 0.14 in 20 minutes, indicating significantly improvement …


Applications Of Spectroscopic Ellipsometry In Corrosion Investigation, Ling-Jie Li, Yu-Ling He, Jing-Lei Lei, Sheng Tao Zhang Oct 2013

Applications Of Spectroscopic Ellipsometry In Corrosion Investigation, Ling-Jie Li, Yu-Ling He, Jing-Lei Lei, Sheng Tao Zhang

Journal of Electrochemistry

As a highly-sensitive and non-destructive in situ technique, spectroscopic ellipsometry has been widely applied in corrosion investigation to acquire the dynamic information of the “electrode-medium” interface during corrosion. This paper lays out some representative demonstrations in several established optical models used to interpret data obtained with spectroscopic ellipsometry in corrosion investigation. In addition, the latest trends in development of this technique are analyzed.