Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Materials Science and Engineering

Series

2016

Institution
Keyword
Publication

Articles 1 - 30 of 38

Full-Text Articles in Physical Sciences and Mathematics

Dual Role Of Sb Ions As Electron Traps And Hole Traps In Photorefractive Sn2P2S6 Crystals, Brant E. Kananen, Eric M. Golden, Sergey A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoika, John W. Mcclory, Nancy C. Giles, Larry E. Halliburton Dec 2016

Dual Role Of Sb Ions As Electron Traps And Hole Traps In Photorefractive Sn2P2S6 Crystals, Brant E. Kananen, Eric M. Golden, Sergey A. Basun, D. R. Evans, A. A. Grabar, I. M. Stoika, John W. Mcclory, Nancy C. Giles, Larry E. Halliburton

Faculty Publications

Doping photorefractive single crystals of Sn2P2S6 with antimony introduces both electron and hole traps. In as-grown crystals, Sb3+ (5s2) ions replace Sn2+ ions. These Sb3+ ions are either isolated (with no nearby perturbing defects) or they have a charge-compensating Sn2+ vacancy at a nearest-neighbor Sn site. When illuminated with 633 nm laser light, isolated Sb3+ ions trap electrons and become Sb2+ (5s25p1) ions. In contrast, Sb3+ ions with an adjacent Sn vacancy trap holes during illumination. The hole is primarily …


Spray Printing Of Organic Semiconducting Single Crystals, Grigorios-Panagiotis Rigas, Marcia M. Payne, John E. Anthony, Peter N. Horton, Fernando A. Castro, Maxim Shkunov Nov 2016

Spray Printing Of Organic Semiconducting Single Crystals, Grigorios-Panagiotis Rigas, Marcia M. Payne, John E. Anthony, Peter N. Horton, Fernando A. Castro, Maxim Shkunov

Chemistry Faculty Publications

Single-crystal semiconductors have been at the forefront of scientific interest for more than 70 years, serving as the backbone of electronic devices. Inorganic single crystals are typically grown from a melt using time-consuming and energy-intensive processes. Organic semiconductor single crystals, however, can be grown using solution-based methods at room temperature in air, opening up the possibility of large-scale production of inexpensive electronics targeting applications ranging from field-effect transistors and light-emitting diodes to medical X-ray detectors. Here we demonstrate a low-cost, scalable spray-printing process to fabricate high-quality organic single crystals, based on various semiconducting small molecules on virtually any substrate by …


Avalanche Statistics From Data With Low Time Resolution, Michael Leblanc, Aya Nawano, Wendelin J. Wright, Xiaojun Gu, Jonathan T. Uhl, Karin A. Dahmen Nov 2016

Avalanche Statistics From Data With Low Time Resolution, Michael Leblanc, Aya Nawano, Wendelin J. Wright, Xiaojun Gu, Jonathan T. Uhl, Karin A. Dahmen

Faculty Journal Articles

Extracting avalanche distributions from experimental microplasticity data can be hampered by limited time resolution. We compute the effects of low time resolution on avalanche size distributions and give quantitative criteria for diagnosing and circumventing problems associated with low time resolution. We show that traditional analysis of data obtained at low acquisition rates can lead to avalanche size distributions with incorrect power-law exponents or no power-law scaling at all. Furthermore, we demonstrate that it can lead to apparent data collapses with incorrect power-law and cutoff exponents. We propose new methods to analyze low-resolution stress-time series that can recover the size distribution …


Investigation Of Electric Field–Induced Structural Changes At Fe-Doped Srtio3 Anode Interfaces By Second Harmonic Generation, David Ascienzo, Haochen Yuan, Steven Greenbaum, Thorsten J. Bayer, Russell A. Maier, Jian-Jun Wang, Clive A. Randall, Elizabeth C. Dickey, Haibin Zhao, Yuhang Ren Oct 2016

Investigation Of Electric Field–Induced Structural Changes At Fe-Doped Srtio3 Anode Interfaces By Second Harmonic Generation, David Ascienzo, Haochen Yuan, Steven Greenbaum, Thorsten J. Bayer, Russell A. Maier, Jian-Jun Wang, Clive A. Randall, Elizabeth C. Dickey, Haibin Zhao, Yuhang Ren

Publications and Research

We report on the detection of electric field–induced second harmonic generation (EFISHG) from the anode interfaces of reduced and oxidized Fe-doped SrTiO3 (Fe:STO) single crystals. For the reduced crystal, we observe steady enhancements of the susceptibility components as the imposed dc-voltage increases. The enhancements are attributed to a field-stabilized electrostriction, leading to Fe:Ti-O bond stretching and bending in Fe:Ti-O6 octahedra. For the oxidized crystal, no obvious structural changes are observed below 16 kV/cm. Above 16 kV/cm, a sharp enhancement of the susceptibilities occurs due to local electrostrictive deformations in response to oxygen vacancy migrations away from the anode. Differences between …


Enhanced Metallic Properties Of Srruo3 Thin Films Via Kinetically Controlled Pulsed Laser Epitaxy, Justin K. Thompson, J. Nichols, S. Lee, S. Ryee, John H. Gruenewald, John G. Connell, Maryam Souri, J. M. Johnson, J. Hwang, M. J. Han, H. N. Lee, D. -W. Kim, Sung S. Ambrose Seo Oct 2016

Enhanced Metallic Properties Of Srruo3 Thin Films Via Kinetically Controlled Pulsed Laser Epitaxy, Justin K. Thompson, J. Nichols, S. Lee, S. Ryee, John H. Gruenewald, John G. Connell, Maryam Souri, J. M. Johnson, J. Hwang, M. J. Han, H. N. Lee, D. -W. Kim, Sung S. Ambrose Seo

Physics and Astronomy Faculty Publications

Metal electrodes are a universal element of all electronic devices. Conducting SrRuO3 (SRO) epitaxial thin films have been extensively used as electrodes in complex-oxide heterostructures due to good lattice mismatches with perovskite substrates. However, when compared to SRO single crystals, SRO thin films have shown reduced conductivity and Curie temperatures (TC), which can lead to higher Joule heating and energy loss in the devices. Here, we report that high-quality SRO thin films can be synthesized by controlling the plume dynamics and growth rate of pulsed laser epitaxy (PLE) with real-time optical spectroscopic monitoring. The SRO thin …


Computational Fluid Dynamics Study Of Molten Steel Flow Patterns And Particle-Wall Interactions Inside A Slide-Gate Nozzle By A Hybrid Turbulent Model, Mahdi Mohammadi-Ghaleni, Mohsen Asle Zaeem, Jeffrey D. Smith, Ronald J. O'Malley Oct 2016

Computational Fluid Dynamics Study Of Molten Steel Flow Patterns And Particle-Wall Interactions Inside A Slide-Gate Nozzle By A Hybrid Turbulent Model, Mahdi Mohammadi-Ghaleni, Mohsen Asle Zaeem, Jeffrey D. Smith, Ronald J. O'Malley

Materials Science and Engineering Faculty Research & Creative Works

Melt flow patterns and turbulence inside a slide-gate throttled submerged entry nozzle (SEN) were studied using Detached–Eddy Simulation (DES) model, which is a combination of Reynolds–Averaged Navier–Stokes (RANS) and Large–Eddy Simulation (LES) models. The DES switching criterion between RANS and LES was investigated to closely reproduce the flow structures of low and high turbulence regions similar to RANS and LES simulations, respectively. The melt flow patterns inside the nozzle were determined by k–ε (a RANS model), LES, and DES turbulent models, and convergence studies were performed to ensure reliability of the results. Results showed that the DES model has significant …


Realizing Urban Water Pollution Impact In Melbourne, Australia Through Painting, Gregory Suplinskas Oct 2016

Realizing Urban Water Pollution Impact In Melbourne, Australia Through Painting, Gregory Suplinskas

Independent Study Project (ISP) Collection

Throughout the month of November 2016, I undertook a creative environmental art project in Melbourne, Australia. I chose to create a water-soluble oil painting (dimensions 3 ft. x 4 ft.) that represents water pollution problems in the city of Melbourne, particularly in Port Phillip Bay. These problems include toxic stormwater runoff, plastics pollution and plastic nurdles, as well as nutrient buildup and algal overgrowth. The painting includes messages regarding sustainability; sustainable action limits the use of our natural resources so that humans can preserve the environment for future generations rather than degrade it. In the painting, I combine conceptual and …


Preface-Jes Focus Issue On Electrolysis For Increased Renewable Energy Penetration, B. Pivovar, M. Carmo, K. Ayers, X. Zhang, J. O'Brien Oct 2016

Preface-Jes Focus Issue On Electrolysis For Increased Renewable Energy Penetration, B. Pivovar, M. Carmo, K. Ayers, X. Zhang, J. O'Brien

Mechanical & Aerospace Engineering Faculty Publications

(First paragraph) Today represents a particularly exciting time, as our planet’s energy system is undergoing major changes due to dramatically decreasing renewable energy prices and increasing societal concerns over greenhouse gas emissions, criteria pollutants (arsenic, mercury, NOx, particulate matter), and climate change. These factors are pushing society toward deep decarbonization of our energy system, perhaps the most challenging issue facing the planet today. Unfortunately, wind and solar energy, while both promising generation sources, come with intermittency challenges and have limitations in their abilities to impact industrial and transportation sector demands where fossil fuel energy carriers based on chemical bonds have …


Puddle Jumping: Spontaneous Ejection Of Large Liquid Droplets From Hydrophobic Surfaces During Drop Tower Tests, Babek Attari, Mark M. Weislogel, Andrew Paul Wollman, Yongkang Chen, Trevor Snyder Oct 2016

Puddle Jumping: Spontaneous Ejection Of Large Liquid Droplets From Hydrophobic Surfaces During Drop Tower Tests, Babek Attari, Mark M. Weislogel, Andrew Paul Wollman, Yongkang Chen, Trevor Snyder

Mechanical and Materials Engineering Faculty Publications and Presentations

Large droplets and puddles jump spontaneously from sufficiently hydrophobicsurfaces during routine drop tower tests. The simple low-cost passive mechanism can in turn be used as an experimental device to investigate dynamic droplet phenomena for drops up to 104 times larger than their normal terrestrial counterparts. We provide and/or confirm quick and qualitative design guides for such “drop shooters” as employed in drop tower tests including relationships to predict droplet ejection durations and velocities as functions of drop volume, surface texture, surface contour, wettability pattern, and fluid properties including contact angle. The latter is determined via profile image comparisons with numerical …


Gc Verification Of The Spacecraft Atmosphere Monitor, Jessica S. Castro, Richard D. Kidd, Jeffrey D. Hein Sep 2016

Gc Verification Of The Spacecraft Atmosphere Monitor, Jessica S. Castro, Richard D. Kidd, Jeffrey D. Hein

STAR Program Research Presentations

International Space Station crew members face the unique challenge of maintaining air quality due to the volatile organic compounds (VOCs) that have the potential to accumulate at unsafe levels. The Spacecraft Atmosphere Monitor (SAM) is a miniature gas chromatograph/mass spectrometer (GCMS) designed to measure major constituents (such as N2, O2 and CO2) and trace VOCs within the cabin of the spacecraft. The gas chromatograph is responsible for separating the sample into its components in order to be characterized. The oven of the gas chromatograph must reach a temperature of 150°C in order to heat constituents …


Local Writing Of Exchange Biased Domains In A Heterostructure Of Co/Pd Pinned By Magnetoelectric Chromia, Uday Singh, William Echtenkamp, M. Street, Christian Binek, Shireen Adenwalla Sep 2016

Local Writing Of Exchange Biased Domains In A Heterostructure Of Co/Pd Pinned By Magnetoelectric Chromia, Uday Singh, William Echtenkamp, M. Street, Christian Binek, Shireen Adenwalla

Shireen Adenwalla Papers

The writing of micrometer-scaled exchange bias domains by local, laser heating of a thin-film heterostructure consisting of a perpendicular anisotropic ferromagnetic Co/Pd multilayer and a (0001) oriented film of the magnetoelectric antiferromagnet Cr2O3 (chromia) is reported. Exchange coupling between chromia’s boundary magnetization and the ferromagnet leads to perpendicular exchange bias. Focused scanning magneto-optical Kerr measurements are used to measure local hysteresis loops and create a map of the exchange bias distribution as a function of the local boundary magnetization imprinted in the antiferromagnetic pinning layer on field cooling. The robust boundary magnetization of the Cr2O …


Miss Lonesome: Old Boats Past Their Prime, Garth Woodruff Aug 2016

Miss Lonesome: Old Boats Past Their Prime, Garth Woodruff

Faculty Publications

No abstract provided.


Self-Similar Random Process And Chaotic Behavior In Serrated Flow Of High Entropy Alloys, Shuying Chen, Liping Yu, Jingli Ren, Xie Xie, Xueping Li, Ying Xu, Guangfeng Zhao, Peizhen Li, Fuqian Yang, Yang Ren, Peter K. Liaw Jul 2016

Self-Similar Random Process And Chaotic Behavior In Serrated Flow Of High Entropy Alloys, Shuying Chen, Liping Yu, Jingli Ren, Xie Xie, Xueping Li, Ying Xu, Guangfeng Zhao, Peizhen Li, Fuqian Yang, Yang Ren, Peter K. Liaw

Chemical and Materials Engineering Faculty Publications

The statistical and dynamic analyses of the serrated-flow behavior in the nanoindentation of a high-entropy alloy, Al0.5CoCrCuFeNi, at various holding times and temperatures, are performed to reveal the hidden order associated with the seemingly-irregular intermittent flow. Two distinct types of dynamics are identified in the high-entropy alloy, which are based on the chaotic time-series, approximate entropy, fractal dimension, and Hurst exponent. The dynamic plastic behavior at both room temperature and 200 °C exhibits a positive Lyapunov exponent, suggesting that the underlying dynamics is chaotic. The fractal dimension of the indentation depth increases with the increase of temperature, and …


Simultaneous Metal-Insulator And Antiferromagnetic Transitions In Orthorhombic Perovskite Iridate Sr0.94Ir0.78O2.68 Single Crystals, Hao Zheng, Jsaminka Terzic, Feng Ye, X. G. Wan, D. Wang, Jinchen Wang, Xiaoping Wang, P. Schlottmann, Shujuan Yuan, Gang Cao Jun 2016

Simultaneous Metal-Insulator And Antiferromagnetic Transitions In Orthorhombic Perovskite Iridate Sr0.94Ir0.78O2.68 Single Crystals, Hao Zheng, Jsaminka Terzic, Feng Ye, X. G. Wan, D. Wang, Jinchen Wang, Xiaoping Wang, P. Schlottmann, Shujuan Yuan, Gang Cao

Center for Advanced Materials Faculty Publications

The orthorhombic perovskite SrIrO3 is a semimetal, an intriguing exception in iridates where the strong spin-orbit interaction coupled with electron correlations tends to impose an insulating state. We report results of our investigation of bulk single-crystal Sr0.94Ir0.78O2.68 or Ir-deficient, orthorhombic perovskite SrIrO3. It retains the same crystal structure as stoichiometric SrIrO3 but exhibits a sharp, simultaneous antiferromagnetic (AFM) and metal-insulator (MI) transition occurring in the basal-plane resistivity at 185 K. Above it, the basal-plane resistivity features an extended regime of almost linear temperature dependence up to 800 K but the strong …


Observation Of Metallic Surface States In The Strongly Correlated Kitaev-Heisenberg Candidate Na2Iro3, Nasser Alidoust, Chang Liu, Su-Yang Xu, Ilya Belopolski, Tongfei Qi, Minggang Zeng, Daniel S. Sanchez, Hao Zheng, Guang Bian, Madhab Neupane, Yu-Tzu Liu, Stephen D. Wilson, Hsin Lin, Arun Bansil, Gang Cao, M. Zahid Hasan Jun 2016

Observation Of Metallic Surface States In The Strongly Correlated Kitaev-Heisenberg Candidate Na2Iro3, Nasser Alidoust, Chang Liu, Su-Yang Xu, Ilya Belopolski, Tongfei Qi, Minggang Zeng, Daniel S. Sanchez, Hao Zheng, Guang Bian, Madhab Neupane, Yu-Tzu Liu, Stephen D. Wilson, Hsin Lin, Arun Bansil, Gang Cao, M. Zahid Hasan

Center for Advanced Materials Faculty Publications

We report high-resolution angle-resolved photoemission spectroscopy measurements on the honeycomb iridate Na2IrO3. Our measurements reveal the existence of a metallic surface band feature crossing the Fermi level with nearly linear dispersion and an estimated surface carrier density of 3.2 x 1013 cm-2, which has not been theoretically predicted or experimentally observed, and provides the first evidence for metallic behavior on the boundary of this material, whereas the bulk bands exhibit a robust insulating gap. We further show the lack of theoretically predicted Dirac cones at the M¯ points of the surface Brillouin …


Anisotropic Softening Of Magnetic Excitations In Lightly Electron-Doped Sr2Iro4, X. Liu, M. P. M. Dean, Z. Y. Meng, M. H. Upton, T. Qi, T. Gog, Y. Cao, J. Q. Lin, D. Meyers, H. Ding, Gang Cao, J. P. Hill Jun 2016

Anisotropic Softening Of Magnetic Excitations In Lightly Electron-Doped Sr2Iro4, X. Liu, M. P. M. Dean, Z. Y. Meng, M. H. Upton, T. Qi, T. Gog, Y. Cao, J. Q. Lin, D. Meyers, H. Ding, Gang Cao, J. P. Hill

Center for Advanced Materials Faculty Publications

The magnetic excitations in electron-doped (Sr1−xLax)2IrO4 with x = 0.03 were measured using resonant inelastic x-ray scattering at the Ir L3 edge. Although much broadened, well defined dispersive magnetic excitations were observed. Comparing with the magnetic dispersion from the undoped compound, the evolution of the magnetic excitations upon doping is highly anisotropic. Along the antinodal direction, the dispersion is almost intact. On the other hand, the magnetic excitations along the nodal direction show significant softening. These results establish the presence of strong magnetic correlations in electron-doped (Sr1−xLax …


Combined Computational-Experimental Design Of High-Temperature, High-Intensity Permanent Magnetic Alloys With Minimal Addition Of Rare-Earth Elements, Rajesh Jha May 2016

Combined Computational-Experimental Design Of High-Temperature, High-Intensity Permanent Magnetic Alloys With Minimal Addition Of Rare-Earth Elements, Rajesh Jha

FIU Electronic Theses and Dissertations

AlNiCo magnets are known for high-temperature stability and superior corrosion resistance and have been widely used for various applications. Reported magnetic energy density ((BH) max) for these magnets is around 10 MGOe. Theoretical calculations show that ((BH) max) of 20 MGOe is achievable which will be helpful in covering the gap between AlNiCo and Rare-Earth Elements (REE) based magnets. An extended family of AlNiCo alloys was studied in this dissertation that consists of eight elements, and hence it is important to determine composition-property relationship between each of the alloying elements and their influence on the bulk properties.

In …


Size Effect On The Magnetic Phase In Sr4Ru3O10, Yan Liu, Jiyong Yang, Weike Wang, Haifeng Du, Wei Ning, Langsheng Ling, Wei Tong, Zhe Qu, Zhaorong Yang, Minling Tian, Gang Cao, Yuheng Zhang May 2016

Size Effect On The Magnetic Phase In Sr4Ru3O10, Yan Liu, Jiyong Yang, Weike Wang, Haifeng Du, Wei Ning, Langsheng Ling, Wei Tong, Zhe Qu, Zhaorong Yang, Minling Tian, Gang Cao, Yuheng Zhang

Center for Advanced Materials Faculty Publications

High quality Sr4Ru3O10 nanoflakes are obtained by the scotch tape-based micro-mechanical exfoliation method. The metamagnetic transition temperature Tmflake is found to decrease in line with the decrease of thickness, while the ferromagnetic (FM) phase, the ordinary, and anomalous Hall effects (OHE and AHE) are independent on the thickness of the flake. Analysis of the data demonstrates that the AHE reflects the FM nature of Sr4Ru3O10, and the decrease of thickness favors the Ru moments aligned in the ab-plane, which induces a decrease of the metamagnetic transition …


Optimizing Chemical & Rheological Properties Of Rejuvenated Bitumen, Dominic Nguyen, Hamzeh Haghshenas Fatmehsari, Santosh Kommidi, Yong-Rak Kim Apr 2016

Optimizing Chemical & Rheological Properties Of Rejuvenated Bitumen, Dominic Nguyen, Hamzeh Haghshenas Fatmehsari, Santosh Kommidi, Yong-Rak Kim

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Bitumen has long been a material used in the construction of roadways, yet new pavement only consists of low fractions of recycled materials due to poor compatibility of aged bitumen and new materials. Thus, rejuvenators, chemical additives, have been used in an attempt to re-balance the chemical composition and restore the physical properties of aged bitumen back to its virgin state. A fundamental understanding of how one particular rejuvenator, soybean oil, revitalizes bitumen was investigated using a multi-scale approach.

Fourier-transform infrared spectroscopy (FTIR) was used to determine the changes in chemical properties of pure and rejuvenated virgin and aged samples. …


The Anisotropy Of Hexagonal Close-Packed And Liquid Interface Free Energy Using Molecular Dynamics Simulations Based On Modified Embedded-Atom Method, Ebrahim Asadi, Mohsen Asle Zaeem Apr 2016

The Anisotropy Of Hexagonal Close-Packed And Liquid Interface Free Energy Using Molecular Dynamics Simulations Based On Modified Embedded-Atom Method, Ebrahim Asadi, Mohsen Asle Zaeem

Materials Science and Engineering Faculty Research & Creative Works

This work aims to comprehensively study the anisotropy of the hexagonal close-packed (HCP)-liquid interface free energy using molecular dynamics (MD) simulations based on the modified-embedded atom method (MEAM). As a case study, all the simulations are performed for Magnesium (Mg). The solid-liquid coexisting approach is used to accurately calculate the melting point and melting properties. Then, the capillary fluctuation method (CFM) is used to determine the HCP-liquid interface free energy (γ) and anisotropy parameters. In CFM, a continuous order parameter is employed to accurately locate the HCP-liquid interface location, and the HCP symmetry-adapted spherical harmonics are used to expand γ …


Identification Of The Zinc-Oxygen Divacancy In Zno Crystals, Maurio S. Holston, Eric M. Golden, Brant E. Kananen, John W. Mcclory, Nancy C. Giles, Larry E. Halliburton Apr 2016

Identification Of The Zinc-Oxygen Divacancy In Zno Crystals, Maurio S. Holston, Eric M. Golden, Brant E. Kananen, John W. Mcclory, Nancy C. Giles, Larry E. Halliburton

Faculty Publications

An electron paramagnetic resonance (EPR) spectrum in neutron-irradiated ZnO crystals is assigned to the zinc-oxygen divacancy. These divacancies are observed in the bulk of both hydrothermally grown and seeded-chemical-vapor-transport-grown crystals after irradiations with fast neutrons. Neutral nonparamagnetic complexes consisting of adjacent zinc and oxygen vacancies are formed during the irradiation. Subsequent illumination below ∼150 K with 442 nm laser light converts these (V2−Zn − V2+O)0 defects to their EPR-active state (VZn − V2+O)+ as electrons are transferred to donors. The resulting photoinduced S = 1/2 spectrum of the …


Notes On Contributions To The Science Of Rare Earth Element Enrichment In Coal And Coal Combustion Byproducts, James C. Hower, Evan J. Granite, David B. Mayfield, Ari S. Lewis, Robert B. Finkelman Mar 2016

Notes On Contributions To The Science Of Rare Earth Element Enrichment In Coal And Coal Combustion Byproducts, James C. Hower, Evan J. Granite, David B. Mayfield, Ari S. Lewis, Robert B. Finkelman

Center for Applied Energy Research Faculty and Staff Publications

Coal and coal combustion byproducts can have significant concentrations of lanthanides (rare earth elements). Rare earths are vital in the production of modern electronics and optics, among other uses. Enrichment in coals may have been a function of a number of processes, with contributions from volcanic ash falls being among the most significant mechanisms. In this paper, we discuss some of the important coal-based deposits in China and the US and critique classification systems used to evaluate the relative value of the rare earth concentrations and the distribution of the elements within the coals and coal combustion byproducts.


More Investigations In Capillary Fluidics Using A Drop Tower, Andrew Paul Wollman, Mark M. Weislogel, Brentley M. Wiles, Donald Pettit, Trevor Snyder Mar 2016

More Investigations In Capillary Fluidics Using A Drop Tower, Andrew Paul Wollman, Mark M. Weislogel, Brentley M. Wiles, Donald Pettit, Trevor Snyder

Mechanical and Materials Engineering Faculty Publications and Presentations

A variety of contemplative demonstrations concerning intermediate-to-large length scale capillary fluidic phenomena were made possible by the brief weightless environment of a drop tower (Wollman and Weislogel in Exp Fluids 54(4):1, 2013). In that work, capillarity-driven flows leading to unique spontaneous droplet ejections, bubble ingestions, and multiphase flows were introduced and discussed. Such efforts are continued herein. The spontaneous droplet ejection phenomena (auto-ejection) is reviewed and demonstrated on earth as well as aboard the International Space Station. This technique is then applied to novel low-g droplet combustion where soot tube structures are created in the wakes of burning drops. …


X-Ray Absorption Spectroscopy Study Of The Effect Of Rh Doping In Sr2Iro4, C. H. Sohn, Deok-Yong Cho, C. -T. Kuo, L. J. Sandilands, Tongfei Qi, Gang Cao, T. W. Noh Mar 2016

X-Ray Absorption Spectroscopy Study Of The Effect Of Rh Doping In Sr2Iro4, C. H. Sohn, Deok-Yong Cho, C. -T. Kuo, L. J. Sandilands, Tongfei Qi, Gang Cao, T. W. Noh

Center for Advanced Materials Faculty Publications

We investigate the effect of Rh doping in Sr2IrO4 using X-ray absorption spectroscopy (XAS). We observed appearance of new electron-addition states with increasing Rh concentration (x in Sr2Ir1−xRhxO4) in accordance with the concept of hole doping. The intensity of the hole-induced state is however weak, suggesting weakness of charge transfer (CT) effect and Mott insulating ground states. Also, Ir Jeff = 1/2 upper Hubbard band shifts to lower energy as x increases up to x = 0.23. Combined with optical spectroscopy, these results suggest a hybridisation-related mechanism, in …


Graphene Oxide Quantum Dots Covalently Functionalized Pvdf Membrane With Significantly-Enhanced Bactericidal And Antibiofouling Performances, Zhiping Zeng, Dingshan Yu, Ziming He, Jing Liu, Fang-Xing Xiao, Yan Zhang, Rong Wang, Dibakar Bhattacharyya, Timothy Thatt Yang Tan Feb 2016

Graphene Oxide Quantum Dots Covalently Functionalized Pvdf Membrane With Significantly-Enhanced Bactericidal And Antibiofouling Performances, Zhiping Zeng, Dingshan Yu, Ziming He, Jing Liu, Fang-Xing Xiao, Yan Zhang, Rong Wang, Dibakar Bhattacharyya, Timothy Thatt Yang Tan

Chemical and Materials Engineering Faculty Publications

Covalent bonding of graphene oxide quantum dots (GOQDs) onto amino modified polyvinylidene fluoride (PVDF) membrane has generated a new type of nano-carbon functionalized membrane with significantly enhanced antibacterial and antibiofouling properties. A continuous filtration test using E. coli containing feedwater shows that the relative flux drop over GOQDs modified PVDF is 23%, which is significantly lower than those over pristine PVDF (86%) and GO-sheet modified PVDF (62%) after 10 h of filtration. The presence of GOQD coating layer effectively inactivates E. coli and S. aureus cells, and prevents the biofilm formation on the membrane surface, producing excellent antimicrobial activity and …


Strain Effects On The Work Function Of An Organic Semiconductor, Yanfei Wu, Annabel R. Chew, Geoffrey A. Rojas, Gjergji Sini, Greg Haugstad, Alex Belianinov, Sergei V. Kalinin, Hong Li, Chad Risko, Jean-Luc Brédas, Alberto Salleo, C. Daniel Frisbie Feb 2016

Strain Effects On The Work Function Of An Organic Semiconductor, Yanfei Wu, Annabel R. Chew, Geoffrey A. Rojas, Gjergji Sini, Greg Haugstad, Alex Belianinov, Sergei V. Kalinin, Hong Li, Chad Risko, Jean-Luc Brédas, Alberto Salleo, C. Daniel Frisbie

Chemistry Faculty Publications

Establishing fundamental relationships between strain and work function (WF) in organic semiconductors is important not only for understanding electrical properties of organic thin films, which are subject to both intrinsic and extrinsic strains, but also for developing flexible electronic devices. Here we investigate tensile and compressive strain effects on the WF of rubrene single crystals. Mechanical strain induced by thermal expansion mismatch between the substrate and rubrene is quantified by X-ray diffraction. The corresponding WF change is measured by scanning Kelvin probe microscopy. The WF of rubrene increases (decreases) significantly with in-plane tensile (compressive) strain, which agrees qualitatively with density …


System And Method For Identifying Electrical Properties Of Integrate Circuits, Mary Y. Lanzerotti Jan 2016

System And Method For Identifying Electrical Properties Of Integrate Circuits, Mary Y. Lanzerotti

AFIT Patents

A new method for displaying electrical properties for integrated circuit (IC) layout designs provides for improved human visualization of those properties and comparison of as designed layout design parameters to as specified layout design parameters and to as manufactured layout parameters. The method starts with a circuitry as designed layout in a first digital format, extracts values for electrical properties from that circuitry as designed layout then annotates those values back into the first digital format. The annotated circuitry as designed layout is then converted from the first digital format to a second digital format that can be converted to …


Patterns Around Us Presentation, Benny Davidovitch Jan 2016

Patterns Around Us Presentation, Benny Davidovitch

Patterns Around Us

No abstract provided.


Benchmark Dose Modeling With Covariates For Nanomaterials, Sarah E. Davidson Jan 2016

Benchmark Dose Modeling With Covariates For Nanomaterials, Sarah E. Davidson

Mathematics

In the last decade, the use of engineered nanomaterials (ENMs) such as titanium dioxide (TiO2), carbon nanotubes (CNTs), carbon nanofibers (CNFs), as well as a variety of other materials have become increasingly popular in commerce because of their many beneficial properties (e.g. ability to manufacture products that are lighter, stronger, and/or more compact). However, according to the National Institute of Occupational Safety and Health, with the development of new nanotechnology it is prudent to ensure the health and safety of workers who are producing or using these materials at the forefront. For many ENMs, occupational exposure limits (OELs) are not …


Complex Capillary Fluidic Phenomena For Passive Control Of Liquids In Low-Gravity Environments, Logan Torres Jan 2016

Complex Capillary Fluidic Phenomena For Passive Control Of Liquids In Low-Gravity Environments, Logan Torres

Undergraduate Research & Mentoring Program

In an effort to further apply the recent results of puddle jumping research, we seek to expand the oblique droplet impact studies of others by exploiting large liquid droplets in the near weightless environment of a drop tower. By using the spontaneous puddle jump mechanism, droplets of volumes 1 mL ≤ V ≤ 3 mL with corresponding Weber numbers of We ≈ 1 are impinged on surfaces inclined in the range 40° ≤ α ≤ 80° (measured from the horizontal plane). Impact surface wetting characteristics exhibit static contact angles θstatic = 165 ± 5°. All impacts result in complete rebound. …