Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 31

Full-Text Articles in Physical Sciences and Mathematics

Characterization Of An Amine-Thiol Cosolvent System : Ethylenediamine And Mercaptoethanol, Fernanda Giongo Fernandes Dec 2022

Characterization Of An Amine-Thiol Cosolvent System : Ethylenediamine And Mercaptoethanol, Fernanda Giongo Fernandes

Legacy Theses & Dissertations (2009 - 2024)

Since its introduction, the amine-thiol cosolvent system has been successfully utilized for the deposition of various thin-film devices, but its mechanism of action is still uncertain. Herein, we have attempted to dissect some of the chemical characteristics of amine-thiol cosolvents, with a special interest taken towards a mixture of ethylenediamine (en) and mercaptoethanol (ME). Conductivity was measured for multiple amine-thiol combinations at different ratios to determine extent of ionization in solution, with en-ME having one of the highest solution conductivities. Exposing the solution to air for several days was found to decrease the conductivity of en-ME, indicating the formation of …


Uio-Type Metal-Organic Framework Derivatives As Sorbents For The Detection Of Gas-Phase Explosives, Matthew Ryan Sherrill Jan 2022

Uio-Type Metal-Organic Framework Derivatives As Sorbents For The Detection Of Gas-Phase Explosives, Matthew Ryan Sherrill

Legacy Theses & Dissertations (2009 - 2024)

The detection of energetic compounds – better known to the public as explosives – has is an important cornerstone of counterterrorism and homeland security . While significant advances have been achieved for the detection of trace explosives in various matrices such as soil, wastewater, and clothing, the detection of explosives in the gas phase remains challenging due to their infamously low vapor pressures. In this thesis, we leverage the high sensitivity of direct analysis in real-time mass spectrometry (DART-MS) and the microporosity of metal-organic frameworks (MOFs) to adsorb and therefore concentrate explosives from the vapor phase and subsequently detect them …


Reliability Characterization Of A Low-K Dielectric Using Its Magnetoresistance As A Diagnostic Tool, Philip Alister Williams Dec 2021

Reliability Characterization Of A Low-K Dielectric Using Its Magnetoresistance As A Diagnostic Tool, Philip Alister Williams

Legacy Theses & Dissertations (2009 - 2024)

The introduction of low dielectric constant materials within the integrated circuit (IC) chip technology industry was a concerted effort to decrease the resistance-capacitance (RC) time delay inherent within the dielectric materials used as insulators. This stems from a demand for greater device density per IC chip and decreased feature sizes but is fast becoming a reliability issue. Concomitant with the demand for decreased feature sizes, also in adherence with Moore’s Law (which states that the number of devices on a die doubles every two years), is a reduction in device speed and performance due to device intra-level interconnection signal delays. …


Synthesis And Adsorption Experiments With Metal-Organic Frameworks For High School And Undergraduate Laboratory Settings, Kate Holley Jan 2019

Synthesis And Adsorption Experiments With Metal-Organic Frameworks For High School And Undergraduate Laboratory Settings, Kate Holley

Legacy Theses & Dissertations (2009 - 2024)

Seven experiments are described and outlined here that introduce high school and undergraduate students to metal–organic frameworks (MOFs) and their applications. The experiments were designed to be completed with basic laboratory equipment and supplies and without the use of expensive characterization instruments, simulating typical high school chemistry laboratory conditions. Students synthesized two well-known MOFs, HKUST-1 and aluminum fumarate, using simple, safe, and rapid methods (fast enough to be performed within the time constrains of a typical high school class). Students then use their synthesized MOFs to explore their inherent sorption properties. In one set of experiments, the synthesized MOFs are …


Investigation Of Optical Second Harmonic Generation From Si (100) With Process Tailored Surface & Embedded Ag Nanostructures For Advanced Si Nonlinear Nanophotonics, Gourav Bhowmik Jan 2019

Investigation Of Optical Second Harmonic Generation From Si (100) With Process Tailored Surface & Embedded Ag Nanostructures For Advanced Si Nonlinear Nanophotonics, Gourav Bhowmik

Legacy Theses & Dissertations (2009 - 2024)

The challenge of current microelectronic architecture in transmission bandwidth and power consumption can be potentially solved by using silicon photonics technologies that are compatible with modern CMOS fabrication. One of the critical active photonic devices for Si photonics is a Si based optical modulator. Most of the reported silicon modulators rely on the free carrier plasma dispersion effect. In those cases, a weak change of the refractive index obtained by carrier accumulation, injection or depletion is utilized in a Mach-Zehnder interferometer or a microring resonator to achieve intensity modulation, rendering them difficult for chip-level implementation due to a large footprint …


Synthesis Of Cadmium Arsenide Semiconductor Nanoparticles, Superatomic Silver Clusters, And Silver Coordination Polymers, Sarthak Jashubhai Patel Jan 2019

Synthesis Of Cadmium Arsenide Semiconductor Nanoparticles, Superatomic Silver Clusters, And Silver Coordination Polymers, Sarthak Jashubhai Patel

Legacy Theses & Dissertations (2009 - 2024)

Nanomaterials have chemical, electronic, optical, and other properties distinct from their bulk counterparts. However, the atom-precise synthesis of these materials remains a challenge, leaving open many scientific questions regarding the size regime between nanoparticulate (quantum confined) and bulk character. In this work, efforts toward the synthesis of nanoparticulate and atom-precise metal and semimetal materials are described. The synthesis of II-V semiconductor Cd3As2 having a near-zero bandgap is discussed. Analysis by UV-Vis absorption spectroscopy and powder X-ray diffraction indicate the formation of material with unexpected crystallinity and absorption properties The interaction between the molecular source of As and the solvent was …


Dna Functionalized Nanoparticles In Nanobiosensor And Sensor Array Development For Molecular Diagnostics And In Vitro Identification Of Biomolecules, Mustafa Salih Hizir Jan 2018

Dna Functionalized Nanoparticles In Nanobiosensor And Sensor Array Development For Molecular Diagnostics And In Vitro Identification Of Biomolecules, Mustafa Salih Hizir

Legacy Theses & Dissertations (2009 - 2024)

Nucleic acid technology along with vast variety of nanomaterials has demonstrated a great potential in many applications from biosensing studies to molecular diagnostics, from biomedical and bioanalytical research to environmental analysis. Especially short single stranded (ss) DNA molecules, called oligonucleotides, are extraordinary biopolymers featuring diverse functionality on the nanoparticles thanks to their high degree of programmability, target-specific binding or cleavage, molecular recognition ability, structure-switching capability, and unique interactions at the bio-nano interfaces. Among those, there have been many biosensing applications utilizing ss DNAs and numerous nanomaterials through various detection techniques such as fluorometric, colorimetric or electrochemical methods. Although many groundbreaking …


Genetically Engineered Polypeptides As Biomimetic Light Harvesting Optical Antenna, Jason P. Seeley Jan 2018

Genetically Engineered Polypeptides As Biomimetic Light Harvesting Optical Antenna, Jason P. Seeley

Legacy Theses & Dissertations (2009 - 2024)

Natural resources useful for the generation of energy are limited. The development of efficient materials capable of utilizing the abundant free solar radiation is of considerable interest. Utilization of otherwise wasted energy sources, including solar radiation, is a progressive step in the quest for sustainable energy. Solar radiation incident upon the earth’s surface exceeds current energy requirements and motivates scientists to investigate and develop functional devices and nanomaterials including light harvesting complexes (LHC) capable of capturing solar radiation for energy conversion and storage.


Technology Development For Detection Of Circulating Disease Biomarkers From Liquid Biopsies Using Multifunctional Nanomaterials, Mustafa Balcioglu Jan 2018

Technology Development For Detection Of Circulating Disease Biomarkers From Liquid Biopsies Using Multifunctional Nanomaterials, Mustafa Balcioglu

Legacy Theses & Dissertations (2009 - 2024)

Despite the advance health care, devastating health conditions such as cancer and infectious diseases that affect populations worldwide are too often not diagnosed until morbid symptoms become apparent in the late phase. Obtaining an early and accurate diagnosis that reveal a hidden lethal threat before the disease becomes complicated may dramatically reduce the severity of its impact on the patient’s life and increase the probability of survival. For example, in the case of ovarian cancer, which is the fifth most common malignancy and the fifth leading cause of cancer mortality in women in the US, the 5-year relative survival is …


Homo- And Heterometallic Bis(Pentafluorobenzoyl)Methanide Complexes Of Copper(Ii) And Cobalt(Ii), Janell Crowder Jan 2017

Homo- And Heterometallic Bis(Pentafluorobenzoyl)Methanide Complexes Of Copper(Ii) And Cobalt(Ii), Janell Crowder

Legacy Theses & Dissertations (2009 - 2024)

β-Diketones are well known to form metal complexes with practically every known metal and metalloid. Metal complexes of fluorinated β-diketones generally exhibit increased volatility and thermal stability compared to the non-fluorinated analogues, and thus are used extensively in various chemical vapor deposition (CVD) processes for the deposition of metal, simple or mixed metal oxides, and fluorine-doped metal oxide thin films. Furthermore, the electron-withdrawing nature of the fluorinated ligand enhances the Lewis acidity of a coordinatively unsaturated metal center which facilitates additional coordination reactions. The physical and structural properties of fluorinated β-diketonate complexes are discussed in Chapter 1 …


Computational Optimization And Characterization Of Molecularly Imprinted Polymers, Jacob Jordan Terracina Jan 2017

Computational Optimization And Characterization Of Molecularly Imprinted Polymers, Jacob Jordan Terracina

Legacy Theses & Dissertations (2009 - 2024)

Molecularly imprinted polymers (MIPs) are a class of materials containing sites capable of selectively binding to the imprinted target molecule. Computational chemistry techniques were used to study the effect of different fabrication parameters (the monomer-to-target ratios, pre-polymerization solvent, temperature, and pH) on the formation of the MIP binding sites. Imprinted binding sites were built in silico for the purposes of better characterizing the receptor – ligand interactions. Chiefly, the sites were characterized with respect to their selectivities and the heterogeneity between sites.


Materials For Giant Spin Hall Effect Devices, Avyaya Jayanthinarasimham Jan 2017

Materials For Giant Spin Hall Effect Devices, Avyaya Jayanthinarasimham

Legacy Theses & Dissertations (2009 - 2024)

Studies presented in this thesis are an effort to control the growth of β W and explore


Exploring Magnetic Nanostructures Embedded Within Single-Crystal Silicon For Generation Of Spin-Polarized Carriers, Machara Krishna Girish Malladi Jan 2017

Exploring Magnetic Nanostructures Embedded Within Single-Crystal Silicon For Generation Of Spin-Polarized Carriers, Machara Krishna Girish Malladi

Legacy Theses & Dissertations (2009 - 2024)

Integrating magnetic functionalities with silicon holds the promise of developing, in the most dominant semiconductor, a paradigm-shift information technology based on the manipulation and control of electron spin and charge. Here, we demonstrate an ion implantation approach enabling the synthesis of a ferromagnetic layer within a defect free Si environment by exploiting an additional implant of hydrogen in a region deep below the metal implanted layer. Upon post-implantation annealing, nanocavities created within the H-implanted region act as trapping sites for gettering the implanted metal species, resulting in the formation of metal nanoparticles in a Si region of excellent crystal quality. …


Degradation And Exciton Energy Transfer Studies In Single-Walled Carbon Nanotube Bundles, Abhishek Gottipati Jan 2016

Degradation And Exciton Energy Transfer Studies In Single-Walled Carbon Nanotube Bundles, Abhishek Gottipati

Legacy Theses & Dissertations (2009 - 2024)

Single walled carbon nanotubes (SWNTs) due to their unique optical behavior, large surface area, robust mechanical strength and electrical properties make them one of the ideal candidates for sensing and opto-electronic applications. In this work, we explore the energy transfer (exciton energy transfer-EET) phenomena occurring between nanotubes in bundles, using resonance Raman spectroscopy.


Development Of Iii-Sb Based Technologies For P-Channel Mosfet In Cmos Applications, Shailesh Kumar Madisetti Jan 2016

Development Of Iii-Sb Based Technologies For P-Channel Mosfet In Cmos Applications, Shailesh Kumar Madisetti

Legacy Theses & Dissertations (2009 - 2024)

The continuous scaling of silicon CMOS predicts the end of roadmap due to the difficulties such as that arise from electrostatic integrity, design complexities, and power dissipation. These fundamental and practical limitations bring the need for innovative design architectures or alternate materials with higher carrier transport than current Si based materials. New device designs such as multigate/gate-all-around architectures improve electrostatics while alternate materials like III-Vs such as III-As for electrons and III-Sbs for holes increase operational speed, lower power dissipation and thereby improve performance of the transistors due to their low effective mass and faster transport properties. Further, application of …


Magnetoresistance Of A Low-K Dielectric, Brian Thomas Mcgowan Jan 2016

Magnetoresistance Of A Low-K Dielectric, Brian Thomas Mcgowan

Legacy Theses & Dissertations (2009 - 2024)

Low-k dielectrics have been incorporated into advanced computer chip technologies as a part of the continuous effort to improve computer chip performance. One drawback associated with the implementation of low-k dielectrics is the large leakage current which conducts through the material, relative to silica. Another drawback is that the breakdown voltage of low-k dielectrics is low, relative to silica [1]. This low breakdown voltage makes accurate reliability assessment of the failure mode time dependent dielectric breakdown (TDDB) in low-k dielectrics critical for the successful implementation of these materials. The accuracy with which one can assess this reliability is currently a …


Tailoring The Optical Properties Of Silicon With Ion Beam Created Nanostructures For Advanced Photonics Applications, Perveen Akhter Jan 2016

Tailoring The Optical Properties Of Silicon With Ion Beam Created Nanostructures For Advanced Photonics Applications, Perveen Akhter

Legacy Theses & Dissertations (2009 - 2024)

In today’s fast life, energy consumption has increased more than ever and with that the demand for a renewable and cleaner energy source as a substitute for the fossil fuels has also increased. Solar radiations are the ultimate source of energy but harvesting this energy in a cost effective way is a challenging task. Si is the dominating material for microelectronics and photovoltaics. But owing to its indirect band gap, Si is an inefficient light absorber, thus requiring a thickness of solar cells beyond tens of microns which increases the cost of solar energy. Therefore, techniques to increase light absorption …


Initiated Chemical Vapor Deposition (Icvd) Polymer Thin Films : Structure-Property Effects On Thermal Degradation And Adhesion, Vijay Jain Bharamaiah Jeevendrakumar Jan 2015

Initiated Chemical Vapor Deposition (Icvd) Polymer Thin Films : Structure-Property Effects On Thermal Degradation And Adhesion, Vijay Jain Bharamaiah Jeevendrakumar

Legacy Theses & Dissertations (2009 - 2024)

Opportunities and challenges for chemical vapor deposition (CVD) of polymer thin films stems from their applications in electronics, sensors, and adhesives with demands for control over film composition, conformity and stability. Initiated chemical vapor deposition (iCVD) is a subset of the CVD technique that conjoins bulk free-radical polymerization chemistry with gas-phase processing. The novelty of iCVD technique stems from the use of an initiator that can be activated at low energies (150 – 300 °C) to react with surface adsorbed monomer to form a polymer film. This reduces risk for potential unwarranted side-reactions.


Optical Metrology For Directed Self-Assembly Patterning Using Mueller Matrix Spectroscopic Ellipsometry Based Scatterometry, Dhairya J. Dixit Jan 2015

Optical Metrology For Directed Self-Assembly Patterning Using Mueller Matrix Spectroscopic Ellipsometry Based Scatterometry, Dhairya J. Dixit

Legacy Theses & Dissertations (2009 - 2024)

The semiconductor industry continues to drive patterning solutions that enable devices with higher memory storage capacity, faster computing performance, lower cost per transistors, and higher transistor density. These developments in the field of semiconductor manufacturing along with the overall minimization of the size of transistors require cutting-edge metrology tools for characterization.


Ion Implantation In Zno : Defect Interaction And Impurity Diffusion, Faisal Yaqoob Jan 2015

Ion Implantation In Zno : Defect Interaction And Impurity Diffusion, Faisal Yaqoob

Legacy Theses & Dissertations (2009 - 2024)

In the first part of this research we studied the entropy changes in diffusion prefactor and its


Fundamental Studies Of Supported Graphene Interfaces : Defect Density Of States In Graphene Field Effect Transistors (Fets) And Ideal Graphene - Silicon Schottky Diodes, Dhiraj Sinha Jan 2014

Fundamental Studies Of Supported Graphene Interfaces : Defect Density Of States In Graphene Field Effect Transistors (Fets) And Ideal Graphene - Silicon Schottky Diodes, Dhiraj Sinha

Legacy Theses & Dissertations (2009 - 2024)

The physics of transport in atomically thin 2D materials is an active area of research, important for understanding fundamental properties of reduced dimensional materials and for applications. New phenomena based on graphene may include properties of topologically protected insulators. Applications of these materials are envisioned in electronics, optoelectronics and spintronics.


Growth And Characterization Of Graphene On Cuni Substrates, Parul Tyagi Jan 2014

Growth And Characterization Of Graphene On Cuni Substrates, Parul Tyagi

Legacy Theses & Dissertations (2009 - 2024)

Graphene is a single layer of sp2 bonded carbon atoms that crystallizes in the honeycomb structure. Because of its true two-dimensional structure, it has very unique electrical properties, including a very high carrier mobility that is symmetric for holes and electrons. To realize these unique properties, it is important to develop a method for growing graphene films with uniform thickness and low defect density. One of the most popular methods of growth is by chemical vapor deposition on Cu substrates, because it is self-limited. However many applications require the growth of graphene films that are more than one atomic layer …


Experimental And Simulation Studies Of Printability Of Buried Euv Mask Defects And Study Of Euv Reflectivity Loss Mechanisms Due To Standard Euv Mask Cleaning Processes, Mihirkant Upadhyaya Jan 2014

Experimental And Simulation Studies Of Printability Of Buried Euv Mask Defects And Study Of Euv Reflectivity Loss Mechanisms Due To Standard Euv Mask Cleaning Processes, Mihirkant Upadhyaya

Legacy Theses & Dissertations (2009 - 2024)

There's a big push for development and commercialization of extreme ultraviolet (EUV) lithography for high-volume semiconductor manufacturing of 14 nm half-pitch patterning and beyond. One of the primary concerns for making this a reality has been the ability to achieve defect-free masks. My study is focused on two aspects related to the performance degradation of the EUV masks namely EUV mask cleaning induced reflectivity loss mechanisms, and the buried multilayer phase defects in EUV masks.


Metal Oxide Growth, Spin Precession Measurements And Raman Spectroscopy Of Cvd Graphene, Akitomo Matsubayashi Jan 2014

Metal Oxide Growth, Spin Precession Measurements And Raman Spectroscopy Of Cvd Graphene, Akitomo Matsubayashi

Legacy Theses & Dissertations (2009 - 2024)

The focus of this dissertation is to explore the possibility of wafer scale graphene-based spintronics. Graphene is a single atomic layer of sp2 bonded carbon atoms that has attracted much attention as a new type of electronic material due to its high carrier mobilities, superior mechanical properties and extremely high thermal conductivity. In addition, it has become an attractive material for use in spintronic devices owing to its long electron spin relaxation time at room temperature. This arises in part from its low spin-orbit coupling and negligible nuclear hyperfine interaction. In order to realize wafer scale graphene spintronics, utilization of …


Ruco To Extend The Scalability Of Ultra-Thin Direct Plate Liners, Daniel Verne Greenslit Jan 2013

Ruco To Extend The Scalability Of Ultra-Thin Direct Plate Liners, Daniel Verne Greenslit

Legacy Theses & Dissertations (2009 - 2024)

In traditional semiconductor technology a sputtered copper seed layer is used to improve the adhesion, microstucture, and electromigration characteristics of electrochemically deposited (ECD) copper. The seed layer is deposited on top of a Ta/TaN stack. The Ta layer acts as an adhesion and nucleation layer for the copper seed and the TaN serves as a diffusion barrier for the Cu. As the line widths continue to shrink, scaling each of these layers becomes more difficult. It would be advantageous for the interconnect to be composed of as much copper as possible, transitioning from the traditional liner seed stack to a …


The Effect Of Nanostructure On The Electrical Properties Of Metal Oxide Materials, Philip Zachary Rice Jan 2013

The Effect Of Nanostructure On The Electrical Properties Of Metal Oxide Materials, Philip Zachary Rice

Legacy Theses & Dissertations (2009 - 2024)

Resistive random access memory (ReRAM) is a potential replacement technology for Flash and other memory implementations. Advantages of ReRAM include increased scalability, low power operation, and compatibility with silicon semiconductor manufacturing. Most of the ReRAM devices described to date have utilized thin film based metal oxide dielectrics as a resistive switching matrix. The goal of this dissertation project has been to investigate the resistive switching behavior of nanoparticulate metal oxides and to develop methods to utilize these materials in ReRAM device fabrication. To this end, nanoparticles of TiO2 and HfO2 were synthesized under a variety of conditions resulting …


A Novel Fabrication Technique For Three-Dimensional Nanostructures, Ravi Kiran Bonam Jan 2012

A Novel Fabrication Technique For Three-Dimensional Nanostructures, Ravi Kiran Bonam

Legacy Theses & Dissertations (2009 - 2024)

Three dimensional micro- and nano-structures are commonly used in the field of Photonics, Optoelectronics, Sensors and Biological applications. Although numerous physical models are developed, a major challenge has been in their fabrication which is commonly limited to conventional layer-by-layer techniques. In this dissertation, a novel method for fabricating three dimensional structures using Electron Beam Lithography (EBL) will be presented.


Experimental And Theoretical Analysis Of Strain Engineered Aluminium Nitride On Silicon For High Quality Aluminium(X)Indium(Y)Gallium(1-X-Y)Nitride Epitaxy, Mihir Hemant Tungare Jan 2012

Experimental And Theoretical Analysis Of Strain Engineered Aluminium Nitride On Silicon For High Quality Aluminium(X)Indium(Y)Gallium(1-X-Y)Nitride Epitaxy, Mihir Hemant Tungare

Legacy Theses & Dissertations (2009 - 2024)

III-Nitrides on Si are of great technological importance due to the availability of large area, epi ready Si substrates and the ability to heterointegrate with mature silicon micro and nanoelectronics. The major roadblock with realizing this is the large difference in thermal expansion coefficients and lattice constants between the two material systems. A novel technique developed in our research lab shows the potential of simultaneous and substantial reduction in dislocation and crack density in GaN on Si (111). Research undertaken in the current doctoral dissertation, validates the superior GaN quality on Si obtained using our technique and determines the factors …


Electron-Phonon Interactions And Quantum Confinement Effects On Optical Transitions In Nanoscale Silicon Films, Vimal Kumar Kamineni Jan 2011

Electron-Phonon Interactions And Quantum Confinement Effects On Optical Transitions In Nanoscale Silicon Films, Vimal Kumar Kamineni

Legacy Theses & Dissertations (2009 - 2024)

Theoretical studies have attributed the temperature dependence of the linear optical response (dielectric function) of bulk semiconductors to electron-phonon interactions and thermal expansion of the lattice. However, the role of phonons in the optical properties of nanoscale structures is often overlooked. This thesis systematically investigates the impact of both carrier confinement and electron-phonon interactions using nanoscale films of silicon in crystalline silicon quantum wells (c-Si QW). Spectroscopic ellipsometry (SE) is a linear optical technique used to of extract the dielectric function and thickness of very thin films. X-ray reflectivity (XRR) was used as the complementary thickness metrology method. The dielectric …


Nucleation, Wetting And Agglomeration Of Copper And Copper-Alloy Thin Films On Metal Liner Surfaces, Stephanie Florence Labarbera Jan 2011

Nucleation, Wetting And Agglomeration Of Copper And Copper-Alloy Thin Films On Metal Liner Surfaces, Stephanie Florence Labarbera

Legacy Theses & Dissertations (2009 - 2024)

One of the key challenges in fabricating narrower and higher aspect ratio interconnects using damascene technology has been achieving an ultra-thin (~2 nm) and continuous Cu seed coverage on trench sidewalls. The thin seed is prone to agglomeration because of poor Cu wetting on the Ta liner. Using in-situ conductance measurements, the effect of lowering the substrate temperature during Cu seed deposition has been studied on tantalum (Ta) and ruthenium (Ru) liner surfaces. On a Ta surface, it was found that lowering the deposition temperature to -65°C increases the nucleation rate of the Cu thin film, and reduces the minimum …