Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Swelling Induced Deformation Of Thermally Responsive Hydrogels, Ying Zhou Oct 2018

Swelling Induced Deformation Of Thermally Responsive Hydrogels, Ying Zhou

Doctoral Dissertations

Hydrogels are crosslinked polymeric networks imbibed with aqueous solutions. They undertake dramatic volume changes through swelling and deswelling processes, which can be stimulated by factors like temperature, pH or different chemicals. These unique properties render hydrogels particularly interesting for shape morphing related applications. In this thesis, we focus on the swelling induced deformation of thermally responsive hydrogels with lower critical solution temperatures (LCSTs), including poly(N-isopropylacrylamide) (PNIPAm) and poly(N,N-diethylacrylamide) (PDEAm). Particularly, benzophenone containing monomers are copolymerized with NIPAm or DEAm to create photocrosslinkable temperature-responsive polymers, which allows fabrication of hydrogels with controlled shapes and crosslinking …


Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn Oct 2018

Parallel Algorithms For Time Dependent Density Functional Theory In Real-Space And Real-Time, James Kestyn

Doctoral Dissertations

Density functional theory (DFT) and time dependent density functional theory (TDDFT) have had great success solving for ground state and excited states properties of molecules, solids and nanostructures. However, these problems are particularly hard to scale. Both the size of the discrete system and the number of needed eigenstates increase with the number of electrons. A complete parallel framework for DFT and TDDFT calculations applied to molecules and nanostructures is presented in this dissertation. This includes the development of custom numerical algorithms for eigenvalue problems and linear systems. New functionality in the FEAST eigenvalue solver presents an additional level of …


Dynamics And Structure Of Polyelectrolyte Complexes, Hamidreza Shojaei-Mahib Jul 2018

Dynamics And Structure Of Polyelectrolyte Complexes, Hamidreza Shojaei-Mahib

Doctoral Dissertations

Interaction of charged macromolecules among themselves and with charged interfaces in salty aqueous medium is a common phenomenon prevalent in biology and synthetic systems. We have addressed several inter-related issues in this general context. First we present a theory of adsorption of polyelectrolytes on the interior and exterior surfaces of a charged spherical vesicle. We derive the critical adsorption condition and the density profile of the polymer in terms of various characteristics of the polymer, vesicle, and the solution, such as the length and charge density of polymer, the radius and charge of the vesicle, the salt concentration of the …


Self-Assembling Networks In Soft Materials, Ishan Prasad Jul 2018

Self-Assembling Networks In Soft Materials, Ishan Prasad

Doctoral Dissertations

This dissertation presents a study on heterogeneous network structure in two distinct classes of soft material systems: disordered assemblies of jammed binary spheres and ordered morphologies of block copolymer melts. The aim is to investigate the combined role of geometry and entropy in structure formation of soft matter assemblies. First, we investigate the influence of particle size asymmetry on structural properties of jammed binary sphere mixtures. We give evidence of two distinct classes of materials separated by a critical size ratio that marks the onset of a sharp transition due to simultaneous jamming of a sub-component of the packing. We …


Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani Mar 2018

Modeling Deformation Behavior And Strength Characteristics Of Sand-Silt Mixtures: A Micromechanical Approach, Mehrashk Meidani

Doctoral Dissertations

This dissertation is comprised of six chapters. In the first chapter the motivation of this research, which was modeling the deformation behavior and strength characteristics of soils under internal erosion, is briefly explained. In the second chapter a micromechanis-based stress-strain model developed for prediction of sand-silt mixtures behavior is presented. The components of the micromechanics-based model are described and undrained behavior of six different types of sand-silt mixtures is predicted for several samples with different fines contents. The need for a more comprehensive compression model for sand-silt mixtures is identified at the end of this chapter. This desired compression model …