Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Physical Sciences and Mathematics

Computational Fluid Dynamics Study Of Molten Steel Flow Patterns And Particle-Wall Interactions Inside A Slide-Gate Nozzle By A Hybrid Turbulent Model, Mahdi Mohammadi-Ghaleni, Mohsen Asle Zaeem, Jeffrey D. Smith, Ronald J. O'Malley Oct 2016

Computational Fluid Dynamics Study Of Molten Steel Flow Patterns And Particle-Wall Interactions Inside A Slide-Gate Nozzle By A Hybrid Turbulent Model, Mahdi Mohammadi-Ghaleni, Mohsen Asle Zaeem, Jeffrey D. Smith, Ronald J. O'Malley

Materials Science and Engineering Faculty Research & Creative Works

Melt flow patterns and turbulence inside a slide-gate throttled submerged entry nozzle (SEN) were studied using Detached–Eddy Simulation (DES) model, which is a combination of Reynolds–Averaged Navier–Stokes (RANS) and Large–Eddy Simulation (LES) models. The DES switching criterion between RANS and LES was investigated to closely reproduce the flow structures of low and high turbulence regions similar to RANS and LES simulations, respectively. The melt flow patterns inside the nozzle were determined by k–ε (a RANS model), LES, and DES turbulent models, and convergence studies were performed to ensure reliability of the results. Results showed that the DES model has significant …


The Anisotropy Of Hexagonal Close-Packed And Liquid Interface Free Energy Using Molecular Dynamics Simulations Based On Modified Embedded-Atom Method, Ebrahim Asadi, Mohsen Asle Zaeem Apr 2016

The Anisotropy Of Hexagonal Close-Packed And Liquid Interface Free Energy Using Molecular Dynamics Simulations Based On Modified Embedded-Atom Method, Ebrahim Asadi, Mohsen Asle Zaeem

Materials Science and Engineering Faculty Research & Creative Works

This work aims to comprehensively study the anisotropy of the hexagonal close-packed (HCP)-liquid interface free energy using molecular dynamics (MD) simulations based on the modified-embedded atom method (MEAM). As a case study, all the simulations are performed for Magnesium (Mg). The solid-liquid coexisting approach is used to accurately calculate the melting point and melting properties. Then, the capillary fluctuation method (CFM) is used to determine the HCP-liquid interface free energy (γ) and anisotropy parameters. In CFM, a continuous order parameter is employed to accurately locate the HCP-liquid interface location, and the HCP symmetry-adapted spherical harmonics are used to expand γ …


Coupled Crystal Orientation-Size Effects On The Strength Of Nano Crystals, Rui Yuan, Irene J. Beyerlein, Caizhi Zhou Jan 2016

Coupled Crystal Orientation-Size Effects On The Strength Of Nano Crystals, Rui Yuan, Irene J. Beyerlein, Caizhi Zhou

Materials Science and Engineering Faculty Research & Creative Works

We study the combined effects of grain size and texture on the strength of nanocrystalline copper (Cu) and nickel (Ni) using a crystal-plasticity based mechanics model. Within the model, slip occurs in discrete slip events exclusively by individual dislocations emitted statistically from the grain boundaries. We show that a Hall-Petch relationship emerges in both initially texture and non-textured materials and our values are in agreement with experimental measurements from numerous studies. We find that the Hall-Petch slope increases with texture strength, indicating that preferred orientations intensify the enhancements in strength that accompany grain size reductions. These findings reveal that texture …


Synthesis And Functionalization Of A Triaryldiamine-Base Photoconductive/Photorefractive Composite, And Its Application To Aberrated Image Restoration, Yichen Liang Jan 2016

Synthesis And Functionalization Of A Triaryldiamine-Base Photoconductive/Photorefractive Composite, And Its Application To Aberrated Image Restoration, Yichen Liang

Doctoral Dissertations

"Organic photorefractive (PR) composites have recently emerged as an important class of materials for applications including high-density data storage, optical communication, and biomedical imaging. In an effort to further improve their performance, this study focused on the utilization of functionalized semiconductor nanocrystals to photosensitize triaryamine (TPD)-based PR composites, as well as the application of TPD-based PR composites in the restoration of aberrated optical information. A novel approach to functionalize CdSe quantum dot (QCdSe) was firstly introduced where the sulfonated triarydiamine (STPD) was used as charge-transporting ligand to passivate QCdSe. TPD-based photoconductive and PR composites were photosensitized with the STPD-passivated QCdSe …


Dft Investigations Of Hydrogen Storage Materials, Gang Wang Jan 2016

Dft Investigations Of Hydrogen Storage Materials, Gang Wang

Doctoral Dissertations

"Hydrogen serves as a promising new energy source having no pollution and abundant on earth. However the most difficult problem of applying hydrogen is to store it effectively and safely, which is smartly resolved by attempting to keep hydrogen in some metal hydrides to reach a high hydrogen density in a safe way. There are several promising metal hydrides, the thermodynamic and chemical properties of which are to be investigated in this dissertation.

Sodium alanate (NaAlH4) is one of the promising metal hydrides with high hydrogen storage capacity around 7.4 wt. % and relatively low decomposition temperature of …