Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Physical Sciences and Mathematics

Surface Functionalized Water-Dispersible Magnetite Nanoparticles: Preparation, Characterization And The Studies Of Their Bioapplications, Haiou Qu Aug 2012

Surface Functionalized Water-Dispersible Magnetite Nanoparticles: Preparation, Characterization And The Studies Of Their Bioapplications, Haiou Qu

University of New Orleans Theses and Dissertations

Iron oxide magnetic nanoparticle synthesis and their surface functionalization hold a crucial position in the design and fabrication of functional materials for a variety of biomedical applications. Non-uniform nanoparticles with poor crystallinity, prepared by conventional methods, have only limited value in biological areas. Large scale synthesis methods that are able to produce high quality, mono-dispersed iron oxide nanoparticles using low cost and environment friendly chemicals are highly desirable. Following synthesis, appropriate surface functionalization is necessary to direct the dispersibility of nanoparticles in aqueous solution in order to provide them with acceptable colloidal stability against the ion strength and many biomolecules …


Investigating The Electron Transport And Light Scattering Enhancement In Radial Core-Shell Metal-Metal Oxide Novel 3d Nanoarchitectures For Dye Sensitized Solar Cells, Gayatri Sahu May 2012

Investigating The Electron Transport And Light Scattering Enhancement In Radial Core-Shell Metal-Metal Oxide Novel 3d Nanoarchitectures For Dye Sensitized Solar Cells, Gayatri Sahu

University of New Orleans Theses and Dissertations

Dye-sensitized solar cells (DSSCs) have attained considerable attention during the last decade because of the potential of becoming a low cost alternative to silicon based solar cells. Electron transport is one of the prominent processes in the cell and it is further a complex process because the transport medium is a mesoporous film. The gaps in the pores are completely filled by an electrolyte with high ionic strength, resulting in electron-ion interactions. Therefore, the electron transport in these so called state-of-the-art systems has a practical limit because of the low electron diffusion coefficient (Dn) in this mesoporous film …


Controlled Attachment Of Nanoparticles To Layered Oxides, Yuan Yao May 2012

Controlled Attachment Of Nanoparticles To Layered Oxides, Yuan Yao

University of New Orleans Theses and Dissertations

A series of oxide materials were modified with different nanoparticles (NPs). Novel cobalt@H4Nb6O17 nanopeapod structures were fabricated and magnetic NPs modified oxide nanosheets and nanoscrolls were prepared. Both aqueous method and two-phase method were applied to prepare gold NPs onto oxide nanosheets, nanoscrolls and other nanocrystals.

The combination of H4Nb6O17 nanoscrolls and cobalt NPs generate a novel method to fabricate nanopeapod structures. Cobalt NPs were synthesized in the presence of exfoliated H4Nb6O17 nanosheets and the resulting magnetic chain structures, formed due to the dipole-dipole interaction, …


Active Response Of Polymer Materials From External Stimuli – Solvents And Light; Grafting Reactions On Perovskite Layers, Jianxia Zhang May 2012

Active Response Of Polymer Materials From External Stimuli – Solvents And Light; Grafting Reactions On Perovskite Layers, Jianxia Zhang

University of New Orleans Theses and Dissertations

The active response of a series of polymeric materials was investigated. Both solvent activated and light activated thin films and wire systems show dynamic behaviors when exposed to different stimuli.

Solvent mediated fluxional behavior of polymer thin films involved extensive, rapid curling both on infusion and evaporation of good solvents. These films can be either lab-fabricated ones or commercial ones, and the curling behavior can be as fast as seconds. Conditions including polymer materials, chosen solvents, and film geometry can affect the behavior.

Methods that allowed for the creation and retention of distorted wire structures were also developed; the asymmetric …