Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 50

Full-Text Articles in Physical Sciences and Mathematics

Material Formulation And Process Optimization Towards Fabricating Robust 3d Printed Structures, Austin Riggins Dec 2023

Material Formulation And Process Optimization Towards Fabricating Robust 3d Printed Structures, Austin Riggins

Doctoral Dissertations

This dissertation focuses on understanding and addressing the fundamental physicochemical phenomena that lead to weak interfaces and structural warpage in material extrusion 3D printing. Polymeric feedstocks used for this manufacturing technique were manipulated through the incorporation of additives that alter the dynamics of the matrix during and after printing. In Chapter II, adhesion between layers of structures printed from PEEK was strengthened through a combination of low-molecular weight additive incorporation and post-printing thermal annealing. Chapter III reports a method for decreasing the irreversible thermal strain of structures printed from poly(lactic acid) by introducing nanographene and photoinitiator additives into the feedstock …


Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park Aug 2023

Chirality, Symmetry-Breaking, And Chemical Substitution In Multiferroics, Kiman Park

Doctoral Dissertations

Multiferroic materials attract significant attention due to their potential utility in a broad range of device applications. The inclusion of heavy metal centers in these materials enhances their magnetoelectric properties, yielding fascinating physical phenomena such as the Dzyaloshinskii–Moriya interaction, nonreciprocal directional dichroism, enhancement of spin-phonon coupling, and spin-orbit-entangled ground states. This dissertation provides a comprehensive survey of magnetoelectric multiferroics containing heavy metal centers and explores spectroscopic techniques under extreme conditions. A microscopic examination of phase transitions, symmetry-breaking, and structure-property relationships enhances the fundamental understanding of coupling mechanisms.

In A2Mo3O8 (A = Fe, Zn, Ni, and Mn), we use optical spectroscopy …


Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg May 2023

Synthesizing, Purifying, And Characterizing Molten Chloride Salts, Phillip W. Halstenberg

Doctoral Dissertations

Molten chloride salts have vast potential as heat transfer fluids with both nuclear and concentrated solar power applications. For application in energy systems, the characteristics that govern these systems must be well understood. This work focuses on inorganic molten chloride salts with a special emphasis on the experimental aspect of chemical research. Chapter 2 covers the synthetic approaches for the formation of molten chloride mixtures. Many salts can be purchased from industrial suppliers, but most must be purified therefore, Chapter 3 evaluates various methodology developed for removal of impurities in salt mixtures. Once the salt of proper content and purity …


Mechanochemical Synthesis Of Task-Specific Conjugated Porous Networks Towards Enhanced Energy Storage, Juntian Fan May 2023

Mechanochemical Synthesis Of Task-Specific Conjugated Porous Networks Towards Enhanced Energy Storage, Juntian Fan

Doctoral Dissertations

Conjugated scaffolds with high electronic conductivity, high surface area, etc. are promising materials for diverse technological applications, especially in the electrochemical field. However, the current synthesis methods are still limited to the traditional solution-based method or the ionothermal method, which always require an inert atmosphere shield, large amounts of organic solvents, noble catalysts, long reaction time up to days, and high temperatures, etc. Therefore, there is a common goal of developing conjugated scaffolds through facile, green, straightforward pathways. Mechanochemistry, which is an efficient, sustainable, solvent-free methodology, could provide a unique reaction environment to synthesize this kind of functionalized materials, resulting …


The Development Of Tailored Amphiphilic Copolymers For Detergent-Free Integral Membrane Protein Extraction, Cameron Edward Workman May 2023

The Development Of Tailored Amphiphilic Copolymers For Detergent-Free Integral Membrane Protein Extraction, Cameron Edward Workman

Doctoral Dissertations

Integral membrane proteins are prolific targets for the design, development, and delivery of pharmaceuticals. In fact, over 60% of all currently available drugs target these proteins to accomplish their therapeutic effect. However, integral membrane proteins remain the least characterized class of all proteins, accounting for only ~2% of all solved protein structures. One of the primary reasons for this low number of solved protein structures is that many membrane proteins lose their native conformation when extracted using conventional methods (e.g. detergents), convoluting accurate structure determination. In contrast, amphiphilic styrene-maleic acid copolymers (SMAs) were recently discovered to readily isolate membrane proteins …


Probing Gas Transport Structure-Property Relationships In Vinyl-Addition Polynorbornenes, Trevor Jonas Wilson May 2023

Probing Gas Transport Structure-Property Relationships In Vinyl-Addition Polynorbornenes, Trevor Jonas Wilson

Doctoral Dissertations

Polynorbornenes are ideal materials for systematic structure-property investigations designed to correlate gas-transport properties to polymer structure. The modular nature of norbornene-derived systems provides a facile route towards the synthesis of diverse polymeric materials, whose structure may be systematically altered through targeted design of monomers, alterations in polymerization mechanism, or some combination of these two strategies. Though many valuable correlations between gas-permeability and polynorbornene structure have been summarized in prior literature, many of these efforts have focused on homopolymer materials with structural changes imposed — almost exclusively — through modifications in substituent chemistry, or through targeted modulation of molar ratios in …


Driving Piezochromism And Metallicity In Van Der Waals Materials Under Compression, Nathan Harms Aug 2022

Driving Piezochromism And Metallicity In Van Der Waals Materials Under Compression, Nathan Harms

Doctoral Dissertations

Complex chalcogenides provide an important platform to explore the interplay between structure, charge, and spin across pressure-induced phase transitions. Where much of the previous research has been focused on tuning these materials towards the single-layer limit, we instead explore the modification of bond lengths and bond angles under compression. In the first project we revealed piezochromism in MnPS3. We combined high pressure optical spectroscopy and first-principles calculations to analyze the dramatic color change (green → yellow → red → black) that takes place as the charge gap shifts across the visible and into the near infrared region, moving …


Experimental Physical Chemistry Applications For Material Science: The Neutron Vibrational Spectrum Of Biaxially-Oriented Pet And Hkust-1 As A Qcm-Based Ethylene Sensor, Zachary D. Stroupe May 2022

Experimental Physical Chemistry Applications For Material Science: The Neutron Vibrational Spectrum Of Biaxially-Oriented Pet And Hkust-1 As A Qcm-Based Ethylene Sensor, Zachary D. Stroupe

Doctoral Dissertations

This work is divided into two comprehensive subjects exploiting fundamental properties of physical chemistry to understand applied materials. The two subjects will be: the inelastic neutron scattering of thin polyethylene terephthalate (PET) films and the design and development of a quartz crystal microbalance-based ethylene detector. For the work involving the thin films, the inelastic neutron scattering (INS) was accomplished using the high flux of the VISION vibrational spectrometer at the Spallation Neutron Source yielding the highest quality data currently available. The torsional vibrational modes of biaxially-oriented PET (bPET) will be reported with the help of DFT calculations to aid in …


Optimization And Development Of Sodium-Based Electrolytes For Energy Storage Devices, Jameson L. Tyler May 2022

Optimization And Development Of Sodium-Based Electrolytes For Energy Storage Devices, Jameson L. Tyler

Doctoral Dissertations

Energy storage devices have undergone development for decades. Much of the research is focused on the improvement of energy density by developing existing electrodes and investigating novel electrode materials. This has led to the overall improvement of traditional lithium-ion batteries, but also the discovery of new energy storage devices such sodium-ion batteries, redox flow batteries, solid electrolyte-based batteries, and many more. As the field expands, fundamental research is necessary to fully ascertain the validity of these novel systems for long term success. One of the most important components to all electrochemical energy storage devices such as batteries and supercapacitors is …


Ultrasound-Driven Fabrication Of Nanosized High-Entropy Materials For Heterogeneous Catalysis, Francis Uchenna Okejiri Dec 2021

Ultrasound-Driven Fabrication Of Nanosized High-Entropy Materials For Heterogeneous Catalysis, Francis Uchenna Okejiri

Doctoral Dissertations

High-entropy materials (HEMs) have emerged as a new class of multi-principal-element materials with great technological prospects. As a unique class of concentrated solid-solution materials, HEMs, formed on the premise of incorporating five or more principal elements into a single crystalline phase, provide an excellent opportunity to access superior catalytic materials ‘hiding’ in the unexplored central regions of a multicomponent phase space of higher orders.

However, the fabrication of HEMs is energy-intensive, typically requiring extreme temperatures and/or pressures under which agglomeration of particles occurs with a commensurate decrease in surface area. For most catalytic applications, non-agglomerated particles with high surface areas …


Exploring The Potential Of Ionothermal Syntheses For High-Performance Lithium-Ion Battery Anode Materials, Runming Tao Dec 2021

Exploring The Potential Of Ionothermal Syntheses For High-Performance Lithium-Ion Battery Anode Materials, Runming Tao

Doctoral Dissertations

Renewable energy storage systems are regarded as the solution to the environmental and energy crises caused by the burning of fossil fuels in vehicles. Unfortunately, owning to the limits to the electrochemical performance of the current anode materials, lithium-ion batteries [LIBs] are still lacking strength in the charging rate-capability and thereby cannot fulfill future application requirements in electrical vehicles [EVs].

Particularly, graphite with a high theoretical specific capacity of 372 mAh/g is unsuitable for EVs due to the safety concerns of passivating solid-electrolyte interphase [SEI] resulted from the low operation potential of 0.1 V versus Li/Li+. The other …


Using Applied Field, Pressure, And Light To Control Magnetic States Of Materials, Amanda J. Clune Aug 2021

Using Applied Field, Pressure, And Light To Control Magnetic States Of Materials, Amanda J. Clune

Doctoral Dissertations

Due to their low energy scales, flexible architectures, and unique exchange pathways, molecule-based multiferroics host a number of unique properties and phase transitions under external stimuli. In this dissertation, we reveal the magnetic- and pressure-driven transitions in [(CH3)2NH2]Mn(HCOO)3 and (NH4)2[FeCl5(H2O)], present a detailed investigation of these materials away from standard equilibrium phases, and develop rich two- and three-dimensional phase diagrams.

The first platform for exploring phase transitions is [(CH3)2NH2]Mn(HCOO)3. This type-I multiferroic contains Mn centers linked by …


Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou Aug 2021

Characterization Techniques And Cation Exchange Membrane For Non-Aqueous Redox Flow Battery, Kun Lou

Doctoral Dissertations

The motivation of this work comes from one of the major problems of emerging non-aqueous flow battery (NAFB) that a separator or membrane which facilitates conductivity and blocks redox species crossover does not exist. Although many aspects of principles can be mirrored from mature fuel cell and aqueous flow battery, it is found that some well-defined membrane properties in aqueous systems such as swelling, transport and interactions are different in non-aqueous solvents to some extent. However, the approach of this work does follow the way perfluorosulfonate ion exchange membrane (PFSA) facilitated development of fuel cell and aqueous flow battery in …


Synthesis, Characterization, And Applications Of Nucleobase-Functionalized Conjugated Polymers, Sina Sabury May 2021

Synthesis, Characterization, And Applications Of Nucleobase-Functionalized Conjugated Polymers, Sina Sabury

Doctoral Dissertations

Understanding the effect of the functional groups at the terminus of the side chains is important for developing conjugated polymers through side chain engineering. Nucleobases, which are known for their multi-functionality, have not been deeply studied as functionality in conjugated polymers due to synthetic challenges. The overarching goal of my dissertation is to design, synthesize, characterize conjugated polymers bearing nucleobase functionality in their side chains and demonstrate their utility in various applications. Stille cross-coupling and direct arylation polymerization are used to synthesize adenine- and thymine-containing conjugated polymers. Monomer design requirements for successful polymerization are studied and conditions that optimize polymerization …


Local Structure And Dynamic Studies Of Mixed Ch4-Co2 Gas Hydrates Via Computational Simulation And Neutron Scattering, Bernadette Rita Cladek Dec 2020

Local Structure And Dynamic Studies Of Mixed Ch4-Co2 Gas Hydrates Via Computational Simulation And Neutron Scattering, Bernadette Rita Cladek

Doctoral Dissertations

Permeated throughout the ocean floor and arctic permafrost, natural gas hydrates contain an estimated 3000 trillion cubic meters, over three times that of traditional shale deposits, of CH4 that is accessible for extraction. Gas hydrates are a crystal structure in which water molecules form a cage network, the host, through hydrogen bonds while trapping a guest molecule such as CH4 in the cavities. These compounds form naturally where the appropriate low temperature and high pressure conditions occur. A promising and tested method of methane recovery is through exchange with CO2, which energetically takes place of the …


Lithium-Aluminum Layered Double Hydroxide Chlorides: Structural And Thermodynamic Studies To Understand Dynamics, Functionality, And Applications In Lithium Adsorption, Samuel Frederi Evans Aug 2020

Lithium-Aluminum Layered Double Hydroxide Chlorides: Structural And Thermodynamic Studies To Understand Dynamics, Functionality, And Applications In Lithium Adsorption, Samuel Frederi Evans

Doctoral Dissertations

No abstract provided.


Providing Insight To Enable The Design Of Tailored, Nano-Structured Polymeric Surfaces And Interfaces, Onome J. Agori-Iwe Aug 2020

Providing Insight To Enable The Design Of Tailored, Nano-Structured Polymeric Surfaces And Interfaces, Onome J. Agori-Iwe

Doctoral Dissertations

Methods are presented for modifying polymeric material surfaces using: 1) selective surface segregation in binary branched/linear polymer blends, and 2) surface functionalization with polymer brushes. Using neutron reflectivity, elastic recoil detection, and other complementary techniques, the aim was to identify structure-property relationships and provide fundamental insight into the time evolution and formation of surfaces and interfaces in these materials.

In blends of poly(styrene) (PS) HyperMacs and DendriMacs in a linear deuterated PS (d-PS) matrix, smaller hyperbranched additives (<1E6 g/mol) move slower than their linear analogues. Larger (>1E6 g/mol) and less flexible hyperbranched additives with smaller fractal dimensions move faster than their linear analogues, suggesting that they are less …


Development Of High-Performing Polydimethylsiloxane-Based Membranes For Carbon Dioxide Separation, Tao Hong Dec 2017

Development Of High-Performing Polydimethylsiloxane-Based Membranes For Carbon Dioxide Separation, Tao Hong

Doctoral Dissertations

Membrane separation is highlighted as one of the most promising approaches to mitigate the excessive CO2 [carbon dioxide] emission, due to its significant reduction of energy cost compared with many conventional separation techniques. Unfortunately, the separation performance of current membranes does not meet the practical CO2/N2 [nitrogen] separation requirements. And due to the huge volume of industrial flue gas, membranes with exceptionally high permeability are needed for practical reasons.

Currently, the separation mechanism of most polymeric membranes is based on size-sieving. However, this method is not sufficient for CO2/N2 separations due to the …


Analysis Of Primary Stripper Foils At The Spallation Neutron Source By An Electron Beam Foil Test Stand, Eric Paul Barrowclough Dec 2017

Analysis Of Primary Stripper Foils At The Spallation Neutron Source By An Electron Beam Foil Test Stand, Eric Paul Barrowclough

Doctoral Dissertations

Diamond films are used at the Spallation Neutron Source (SNS) as the primary charge exchange foils (i.e., stripper foils) of the accelerated 1 GeV (Gigaelectron volts) hydride ions. The most common type of film used is a nanocrystalline diamond film, typically 17 mm x 45 mm (millimeter) with an aerial density of 350 μg/cm2 (microgram per square centimeter). The diamond film is deposited on a corrugated silicon substrate using plasma-assisted chemical vapor deposition. After the growth of the diamond film, 30 mm of the silicon substrate is etched away, leaving a freestanding diamond foil with a silicon handle that …


Electronic And Magnetic Materials Under External Stimuli, Kenneth Robert O'Neal Aug 2017

Electronic And Magnetic Materials Under External Stimuli, Kenneth Robert O'Neal

Doctoral Dissertations

The interaction between spin, charge, and lattice degrees of freedom leads to exotic and useful properties in multifunctional materials. This delicate balance of energy scales allows external stimuli such as temperature, magnetic field, or pressure to drive to novel phases. As a local probe technique, spectroscopy can provide insight into the microscopic mechanism of the phase transitions. In this dissertation I present spectroscopic studies of functional materials under extreme conditions.

Nanomaterials have attracted attention because nanoscale confinement affects various material properties and often reduces energy scales or suppress phase transitions. Combining Raman and infrared spectroscopies reveals that the breakdown mechanism …


Design-Structure-Property Relationships Of Purine-Based Copolymers And Chromophores, Graham Smith Collier May 2017

Design-Structure-Property Relationships Of Purine-Based Copolymers And Chromophores, Graham Smith Collier

Doctoral Dissertations

Understanding the relationship between monomer design and polymer properties is imperative for developing polymeric systems that can find applicability in targeted technologies. Purines have been extensively studied across many scientific disciplines and are useful due to the diverse properties they possess, which is due in part to the broad scope of precise synthetic transformations that are used to tailor their properties. The overarching goal of my dissertation involves developing the synthesis of “poly(purine)s” and investigating the effect of purine monomer design on polymer properties. In this vein, poly(purine)s and purine-based donor-acceptor small-molecules are synthesized via Stille cross-coupling reactions with a …


Development Of High Performance Gas Separation Membranes Through Intelligent Catalyst And Monomer Design, Kevin Richard Gmernicki May 2017

Development Of High Performance Gas Separation Membranes Through Intelligent Catalyst And Monomer Design, Kevin Richard Gmernicki

Doctoral Dissertations

Polymer membranes are a valuable tool for separating components of liquid and gas mixtures. Heavily inspired by biological systems, the idea of using the intrinsic properties of polymers to perform otherwise energy-intensive tasks is attractive for applications such as water desalination, natural gas sweetening, and post-combustion carbon capture. Of particular interest to our research group, post-combustion carbon capture is a promising potential solution aimed at reducing the carbon footprint involved with production, transportation, and storage of electrical energy generation.

Every year, the United States produces close to seven billion metric tons of carbon dioxide, of which a significant portion is …


All Acrylic Based Thermoplastic Elastomers: Design And Synthesis For Improved Mechanical Performance, Wei Lu May 2017

All Acrylic Based Thermoplastic Elastomers: Design And Synthesis For Improved Mechanical Performance, Wei Lu

Doctoral Dissertations

Thermoplastic elastomers (TPEs) have been widely studied because of their recyclability, good processability, low production cost and distinct performance. Compared to the widely-used styrenic TPEs, acrylate based TPEs have potential advantages including exceptional chemical, heat, oxygen and UV resistance, optical transparence, and oil resistance. However, their high entanglement molecular weight lead to “disappointing” mechanical performance as compared to styrenic TPEs. The work described in this dissertation is aimed at employing various approaches to develop the all acrylic based thermoplastic elastomers with improved mechanical performance.

The first part of this work focuses on the introduction of acrylic polymers with high glass …


Development Of An F-Element Separation Chemistry Using Solid Electrolytes, Kristian Guy Myhre Dec 2016

Development Of An F-Element Separation Chemistry Using Solid Electrolytes, Kristian Guy Myhre

Doctoral Dissertations

The f‒elements (lanthanides and actinides) have numerous applications and are critically important to many industries, including the energy, security, and medical industries. One of the barriers to increased use and availability of the f‒elements is the difficulty in separating them from each other due to their similar chemistries. This is especially true of the trivalent f‒elements (lanthanides and minor actinides). The development of separation techniques that maximize the differences in the physicochemical properties of the f‒elements is therefore an important area of research. For these reasons, an effort was undertaken to explore the use of solid …


Understanding The Influence Of Non-Covalent Interactions And Nanoparticle Geometries In Carbon Based Polymer Nanocomposites, Bradley Carroll Miller Dec 2015

Understanding The Influence Of Non-Covalent Interactions And Nanoparticle Geometries In Carbon Based Polymer Nanocomposites, Bradley Carroll Miller

Doctoral Dissertations

Low-loading polymer nanocomposites (PNC) are an area of great interest in polymer science. As nanoparticles (NP) are typically expensive in comparison to matrix materials; the low loading regime makes the most efficient use of materials, and represents the optimum for realizing cost effective, high-performance PNCs. However, formulating effective low-loading composites is not without challenges. In addition to the typical requirement of good dispersion for efficient translation of NP properties to the bulk, low-loading composites can sometimes exhibit anomalous (non-classical) dynamics, and unpredictable properties. It is within this context that this thesis aims to examine the effects of NP geometry and …


Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das Dec 2015

Interface And Morphology Engineering In Solution-Processed Electronic And Optoelectronic Devices, Sanjib Das

Doctoral Dissertations

The first part of this dissertation focuses on interface and morphology engineering in polymer- and small molecule-based organic solar cells. High-performance devices were fabricated, and the device performance was correlated with nanoscale structures using various electrical, spectroscopic and microscopic characterization techniques, providing guidelines for high-efficiency cell design.

The second part focuses on perovskite solar cells (PSCs), an emerging photovoltaic technology with skyrocketing rise in power conversion efficiency (PCE) and currently showing comparable PCEs with those of existing thin film photovoltaic technologies such as CIGS and CdTe. Fabrication of large-area PSCs without compromising reproducibility and device PCE requires formation of dense, …


Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis Dec 2015

Solution And Surface Properties Of Architecturally- And Compositionally-Complex Block Copolymers And Their Binary Mixtures, Jesse Lawrence Davis

Doctoral Dissertations

The spontaneous generation of complex structures from polymeric building blocks provides a simple yet effective route to create useful soft matter structures having potential application in a variety of nanotechnologies. The topology, chemical structure, block composition, and sequence of the constituent building blocks of polymers are tunable through synthetic chemistry. This tunability offers attractive opportunities to generate complex, yet well-defined structures with control over the geometry, packing symmetry, and microdomain structure. This thesis work involves the study of the self-assembly behaviors of architecturally complex amphiphilic block copolymers (ABCs). ABCs are composed of two or more chemically distinct blocks that are …


Novel Thermoplastic Elastomers Based On Benzofulvene: Synthesis And Mechanical Properties, Weiyu Wang Dec 2015

Novel Thermoplastic Elastomers Based On Benzofulvene: Synthesis And Mechanical Properties, Weiyu Wang

Doctoral Dissertations

Thermoplastic elastomers (TPEs) are of great importance both academically and technologically. Currently TPEs are the predominated form of styrene-diene copolymers. However, these styrenic TPEs have serious limitations in applications, especially at higher temperature, because of their low upper service temperature (UST). The work described in this dissertation aimed to developing thermoplastic elastomers with a higher UST and lower cost.

In order to develop TPEs with a higher UST, we employed benzofulvene, an anionically polymerizable monomer in hydrocarbon solvent at room temperature, as the glassy block and copolymerized it with isoprene to prepare polybenzofulvene-polyisoprene-polybenzofulvene (FIF) triblock copolymers. Among all triblock copolymers …


The Effect Of Composition And Architecture On Polymer Behavior In Homopolymer Blends And Inter-Filament Bonding In 3d Printed Models, Edward Roy Duranty Dec 2015

The Effect Of Composition And Architecture On Polymer Behavior In Homopolymer Blends And Inter-Filament Bonding In 3d Printed Models, Edward Roy Duranty

Doctoral Dissertations

This dissertation presents work that increases our understanding of the effects of composition and architecture on copolymer structure and dynamics and how they affect material diffusion between filaments in a 3D printed model. Copolymers are polymer chains made up of at least two different monomers. The ordering and arrangement of the two monomer species within a copolymer can have drastic effects on the behavior and properties of the copolymer.

The first chapter of this dissertation examines how the copolymer composition affects the structure and dynamics of the chain in a homopolymer blend. This study used a modified Monte Carlo BFM …


Vapor Synthesis And Thermal Evolution Of Supportless, Metal Nanotubes And Application As Electrocatalysts, Robert William Atkinson Aug 2015

Vapor Synthesis And Thermal Evolution Of Supportless, Metal Nanotubes And Application As Electrocatalysts, Robert William Atkinson

Doctoral Dissertations

One of the major limitations of proton exchange membrane fuel cells (PEMFCs) is the high cost and poor durability of the currently preferred catalyst design, small Pt nanoparticles supported on high surface area carbon (Pt/C). Unsupported, high-aspect ratio nanostructured catalysts, or extended surface catalysts, are a promising paradigm as electrocatalysts for a number of electrochemical reactions. These extended surface catalysts generally exhibit higher specific activities compared to their carbon-supported nanoparticle counterparts that have been ascribed to their unique electronic, surface and structural properties. Extended surface catalysts frequently maintain enhanced durability over supported catalysts during fuel cell operation because they are …