Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Physical Sciences and Mathematics

In Situ Monitoring Of Catalytic Molecular Transformations On Noble Metal Nanocatalysts Using Surface-Enhanced Raman Spectroscopy, Hui Wang, Qingfeng Zhang, Esteban Villarreal, Hao Jing, Kexun Chen Jan 2020

In Situ Monitoring Of Catalytic Molecular Transformations On Noble Metal Nanocatalysts Using Surface-Enhanced Raman Spectroscopy, Hui Wang, Qingfeng Zhang, Esteban Villarreal, Hao Jing, Kexun Chen

Journal of the South Carolina Academy of Science

Noble metal nanoparticles have long been of tremendous interest in the nanophotonics and nanocatalysis communities owing to their intriguing size- and shape-dependent plasmonic and catalytic properties. The combination of tunable plasmon resonances with superior catalytic activities on the same noble metal nanoparticle, however, has long been challenging because the research on nanoplasmonics and nanocatalysis deals with nanoparticles in two drastically different size regimes. While tunable plasmon resonances are a unique feature of metallic nanoparticles in the sub-wavelength size regime, heterogeneous catalysis requires the use of substrate-supported sub-5 nm nanoparticulate catalysts. In this mini-review article, we share with the readers several …


Where Do New Materials Come From? Neither The Stork Nor The Birds And The Bees! In Search Of The Next “First Material”, Gregory Morrison, Dileka Abeysinghe, Justin B. Felder, Shani Egodawatte, Timothy Ferreira, Hans Conrad Zur Loye Apr 2017

Where Do New Materials Come From? Neither The Stork Nor The Birds And The Bees! In Search Of The Next “First Material”, Gregory Morrison, Dileka Abeysinghe, Justin B. Felder, Shani Egodawatte, Timothy Ferreira, Hans Conrad Zur Loye

Journal of the South Carolina Academy of Science

Materials discovery and optimization has driven the rapid technological advancements that have been observed in our lifetimes. For this advancement to continue, solid-state chemists must continue to develop new materials. Where do these new materials come from? In this review, we discuss the approaches used by the zur Loye group to discover the next “First Material”, a new material exhibiting a desired or not previously observed property that can be optimized for use in the technologies of tomorrow. Specifically, we discuss several crystal growth techniques that we have used with great success to synthesize new materials: the flux growth method, …


High Temperature Electrochemical Engineering And Clean Energy Systems, Brenda L. Garcia-Diaz, Luke Olson, Michael Martinez-Rodriguez, Roderick Fuentes, Hector Colon-Mercado, Josh Gray Mar 2016

High Temperature Electrochemical Engineering And Clean Energy Systems, Brenda L. Garcia-Diaz, Luke Olson, Michael Martinez-Rodriguez, Roderick Fuentes, Hector Colon-Mercado, Josh Gray

Journal of the South Carolina Academy of Science

Global power demand is projected to more than double by 2050 and meeting this increased power demand will require maintaining or increasing power output from all existing energy sources while adding a large amount of new capacity. The power sources that have the greatest opportunity to fulfill this demand gap over this time period are clean energy sources including solar and nuclear power. One of the areas of expertise that SRNL has been applying to help with a variety of clean energy technologies is in high temperature electrochemistry. Savannah River National Laboratory (SRNL) in collaboration with industrial and university partners …