Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Life Sciences

Series

Temperature

Institution
Publication Year
Publication
File Type

Articles 1 - 30 of 57

Full-Text Articles in Physical Sciences and Mathematics

Climate Change-Associated Declines In Water Clarity Impair Feeding By Common Loons, Walter H. Piper, Max R. Glines, Kevin C. Rose Mar 2024

Climate Change-Associated Declines In Water Clarity Impair Feeding By Common Loons, Walter H. Piper, Max R. Glines, Kevin C. Rose

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Climate change has myriad impacts on ecosystems, but the mechanisms by which it affects individual species can be difficult to pinpoint. One strategy to discover such mechanisms is to identify a specific ecological factor related to survival or reproduction and determine how that factor is affected by climate. Here we used Landsat imagery to calculate water clarity for 127 lakes in northern Wisconsin from 1995 to 2021 and thus investigate the effect of clarity on the body condition of an aquatic visual predator, the common loon (Gavia immer). In addition, we examined rainfall and temperature as potential predictors …


The Evolution Of Life History Traits And Their Thermal Plasticity In Daphnia, Larry L. Bowman Jr., David M. Post Jan 2023

The Evolution Of Life History Traits And Their Thermal Plasticity In Daphnia, Larry L. Bowman Jr., David M. Post

ETSU Faculty Works

Few studies have explored the relative strength of ecogeographic versus lineage-specific effects on a global scale, particularly for poikilotherms, those organisms whose internal temperature varies with their environment. Here, we compile a global dataset of life history traits in Daphnia, at the species-and population-level, and use those data to parse the relative influences of lineage-specific effects and climate. We also compare the thermal response (plasticity) of life history traits and their dependence on climate, temperature, precipitation, and latitude. We found that the mode of evolution for life history traits varies but that the thermal response of life history traits most …


Are Soybean Models Ready For Climate Change Food Impact Assessments?, Kritika Kothari, Rafael Battisti, Kenneth J. Boote, Sotirios V. Archontoulis, Adriana Confalone, Julie Constantin, Santiago V. Cuadra, Philippe Debaeke, Babacar Faye, Brian Grant, Gerrit Hoogenboom, Qi Jing, Michael Van Der Laan, Fernando Antônio Macena Da Silva, Fabio R. Marin, Alireza Nehbandani, Claas Nendel, Larry C. Purcell, Budong Qian, Alex C. Ruane, Céline Schoving, Evandro H. F. M. Silva, Ward Smith, Afshin Soltani, Amit Srivastava, Nilson A. Vieira Jr., Stacey Slone, Montserrat Salmerón Apr 2022

Are Soybean Models Ready For Climate Change Food Impact Assessments?, Kritika Kothari, Rafael Battisti, Kenneth J. Boote, Sotirios V. Archontoulis, Adriana Confalone, Julie Constantin, Santiago V. Cuadra, Philippe Debaeke, Babacar Faye, Brian Grant, Gerrit Hoogenboom, Qi Jing, Michael Van Der Laan, Fernando Antônio Macena Da Silva, Fabio R. Marin, Alireza Nehbandani, Claas Nendel, Larry C. Purcell, Budong Qian, Alex C. Ruane, Céline Schoving, Evandro H. F. M. Silva, Ward Smith, Afshin Soltani, Amit Srivastava, Nilson A. Vieira Jr., Stacey Slone, Montserrat Salmerón

Plant and Soil Sciences Faculty Publications

An accurate estimation of crop yield under climate change scenarios is essential to quantify our ability to feed a growing population and develop agronomic adaptations to meet future food demand. A coordinated evaluation of yield simulations from process-based eco-physiological models for climate change impact assessment is still missing for soybean, the most widely grown grain legume and the main source of protein in our food chain. In this first soybean multi-model study, we used ten prominent models capable of simulating soybean yield under varying temperature and atmospheric CO2 concentration [CO2] to quantify the uncertainty in soybean yield …


The Effects Of Temperature Changes On Bioluminescent Dinoflagellates (How Climate Change May Affect Our Ocean's Raves), Kayleigh X. Ambrose, Molly Fleming, Carla Caceres Apr 2022

The Effects Of Temperature Changes On Bioluminescent Dinoflagellates (How Climate Change May Affect Our Ocean's Raves), Kayleigh X. Ambrose, Molly Fleming, Carla Caceres

PRECS student projects

Many species of Dinoflagellates are capable of producing bioluminescence. Most species will have an optimal temperature range for bioluminescence production. With sea surface temperatures expected to rise, we have designed an experiment to test the relationship between temperature and bioluminescence in Pyrocystis fusiformis.


Tailored Porous Carbons Enabled By Persistent Micelles With Glassy Cores, Eric R. Williams, Paige L. Mcmahon, Joseph E. Reynolds Iii, Jonathan L. Snider, Vitalie Stavila, Mark Allendorf, Morgan Stefik Jun 2021

Tailored Porous Carbons Enabled By Persistent Micelles With Glassy Cores, Eric R. Williams, Paige L. Mcmahon, Joseph E. Reynolds Iii, Jonathan L. Snider, Vitalie Stavila, Mark Allendorf, Morgan Stefik

Faculty Publications

Porous nanoscale carbonaceous materials are widely employed for catalysis, separations, and electrochemical devices where device performance often relies upon specific and well-defined regular feature sizes. The use of block polymers as templates has enabled affordable and scalable production of diverse porous carbons. However, popular carbon preparations use equilibrating micelles which can change dimensions in response to the processing environment. Thus, polymer methods have not yet demonstrated carbon nanomaterials with constant average template diameter and tailored wall thickness. In contrast, persistent micelle templates (PMTs) use kinetic control to preserve constant micelle template diameters, and thus PMT has enabled constant pore diameter …


Thermal Acclimation Of Tropical Coral Reef Fishes To Global Heat Waves, Jacob L. Johansen, Lauren E. Nadler, Adam Habary, Alyssa J. Bowden, Jodie Rummer Jan 2021

Thermal Acclimation Of Tropical Coral Reef Fishes To Global Heat Waves, Jacob L. Johansen, Lauren E. Nadler, Adam Habary, Alyssa J. Bowden, Jodie Rummer

Marine & Environmental Sciences Faculty Articles

As climate-driven heat waves become more frequent and intense, there is increasing urgency to understand how thermally sensitive species are responding. Acute heating events lasting days to months may elicit acclimation responses to improve performance and survival. However, the coordination of acclimation responses remains largely unknown for most stenothermal species. We documented the chronology of 18 metabolic and cardiorespiratory changes that occur in the gills, blood, spleen, and muscles when tropical coral reef fishes are thermally stressed (+3.0°C above ambient). Using representative coral reef fishes (Caesio cuning and Cheilodipterus quinquelineatus) separated by >100 million years of evolution and …


Fast And Pervasive Transcriptomic Resilience And Acclimation Of Extremely Heat-Tolerant Coral Holobionts From The Northern Red Sea, Romain Savary, Daniel J. Barshis, Christian R. Voolstra, Anny Cárdenas, Nicolas R. Evensen, Guilhem Banc-Prandi, Maoz Fine, Anders Meiborn Jan 2021

Fast And Pervasive Transcriptomic Resilience And Acclimation Of Extremely Heat-Tolerant Coral Holobionts From The Northern Red Sea, Romain Savary, Daniel J. Barshis, Christian R. Voolstra, Anny Cárdenas, Nicolas R. Evensen, Guilhem Banc-Prandi, Maoz Fine, Anders Meiborn

Biological Sciences Faculty Publications

Corals from the northern Red Sea and Gulf of Aqaba exhibit extreme thermal tolerance. To examine the underlying gene expression dynamics, we exposed Stylophora pistillata from the Gulf of Aqaba to short-term (hours) and long-term (weeks) heat stress with peak seawater temperatures ranging from their maximum monthly mean of 27 °C (baseline) to 29.5 °C, 32 °C, and 34.5 °C. Corals were sampled at the end of the heat stress as well as after a recovery period at baseline temperature. Changes in coral host and symbiotic algal gene expression were determined via RNA-sequencing (RNA-Seq). Shifts in coral microbiome composition were …


Thermal Stress-Related Spatiotemporal Variations In High-Latitude Coral Reef Benthic Communities, Nicholas P. Jones, Joana Figueiredo, David S. Gilliam Aug 2020

Thermal Stress-Related Spatiotemporal Variations In High-Latitude Coral Reef Benthic Communities, Nicholas P. Jones, Joana Figueiredo, David S. Gilliam

Marine & Environmental Sciences Faculty Articles

High-latitude coral reef communities have been postulated as the first areas to undergo reorganisation under climate change. Tropicalisation has been identified in some high-latitude communities and is predicted in others, but it is unclear how the resident benthic taxa are affected. We conducted a long-term (2007–2016) assessment of changes to benthic community cover in relation to thermal stress duration on the Southeast Florida Reef Tract (SEFRT). Thermal stress events, both hot and cold, had acute (thermal stress duration affected benthic cover that year) and chronic (thermal stress duration affected benthic cover the following year) impacts on benthic cover. Chronic heat …


Patterns And Potential Causes Of Changing Winter Bird Distributions In South Dakota, David L. Swanson, Reza Goljani Amirkhiz, Mark D. Dixon Jan 2020

Patterns And Potential Causes Of Changing Winter Bird Distributions In South Dakota, David L. Swanson, Reza Goljani Amirkhiz, Mark D. Dixon

The Prairie Naturalist

Average winter temperatures in the north-central United States have been increasing since the 1970s, and this warming might influence winter distributions of birds in the region. Species potentially influenced by such winter warming include short-distance migrants for which the northern boundary of the winter range is influenced by temperature, such as hermit thrush (Catharus guttatus), yellow-rumped warbler (Setophaga coronata), and fox sparrow (Passerella iliaca). We examined winter records during 1974–2017 from a citizen-science bird observation database for South Dakota to determine recent trends in winter records for these three species. We compared their occurrence patterns with those for three benchmark …


Quantifying Climate Sensitivity And Climate-Driven Change In North American Amphibian Communities, David A. W. Miller, Evan H Campbell Grant, Erin Muths, Staci M. Amburgey, Michael J. Adams, Maxwell B. Joseph, J. Hardin Waddle, Pieter T. J. Johnson, Maureen E. Ryan, Benedikt R. Schmidt, Daniel L. Calhoun, Courtney L. Davis, Robert N. Fisher, David M. Green, Blake R. Hossack, Tracy A. G. Rittenhouse, Susan C. Walls, Larissa L. Bailey, Sam S. Cruickshank, Gary M. Fellers, Thomas A. Gorman, Carola A. Haas, Ward Hughson, David S. Pilliod, Steve J. Price, Andrew M. Ray, Walt Sadinski, Daniel Saenz, William J. Barichivich, Adrianne Brand Sep 2018

Quantifying Climate Sensitivity And Climate-Driven Change In North American Amphibian Communities, David A. W. Miller, Evan H Campbell Grant, Erin Muths, Staci M. Amburgey, Michael J. Adams, Maxwell B. Joseph, J. Hardin Waddle, Pieter T. J. Johnson, Maureen E. Ryan, Benedikt R. Schmidt, Daniel L. Calhoun, Courtney L. Davis, Robert N. Fisher, David M. Green, Blake R. Hossack, Tracy A. G. Rittenhouse, Susan C. Walls, Larissa L. Bailey, Sam S. Cruickshank, Gary M. Fellers, Thomas A. Gorman, Carola A. Haas, Ward Hughson, David S. Pilliod, Steve J. Price, Andrew M. Ray, Walt Sadinski, Daniel Saenz, William J. Barichivich, Adrianne Brand

Forestry and Natural Resources Faculty Publications

Changing climate will impact species’ ranges only when environmental variability directly impacts the demography of local populations. However, measurement of demographic responses to climate change has largely been limited to single species and locations. Here we show that amphibian communities are responsive to climatic variability, using > 500,000 time-series observations for 81 species across 86 North American study areas. The effect of climate on local colonization and persistence probabilities varies among eco-regions and depends on local climate, species life-histories, and taxonomic classification. We found that local species richness is most sensitive to changes in water availability during breeding and changes in …


Climate And Plant Controls On Soil Organic Matter In Coastal Wetlands, Michael J. Osland, Christopher A. Gabler, James B. Grace, Richard H. Day, Meagan L. Mccoy, Jennie L. Mcleod, Andrew S. From, Nicholas M. Enwright, Laura C. Feher, Camille L. Stagg Jun 2018

Climate And Plant Controls On Soil Organic Matter In Coastal Wetlands, Michael J. Osland, Christopher A. Gabler, James B. Grace, Richard H. Day, Meagan L. Mccoy, Jennie L. Mcleod, Andrew S. From, Nicholas M. Enwright, Laura C. Feher, Camille L. Stagg

School of Earth, Environmental, and Marine Sciences Faculty Publications and Presentations

Coastal wetlands are among the most productive and carbon‐rich ecosystems on Earth. Long‐term carbon storage in coastal wetlands occurs primarily belowground as soil organic matter (SOM). In addition to serving as a carbon sink, SOM influences wetland ecosystem structure, function, and stability. To anticipate and mitigate the effects of climate change, there is a need to advance understanding of environmental controls on wetland SOM. Here, we investigated the influence of four soil formation factors: climate, biota, parent materials, and topography. Along the northern Gulf of Mexico, we collected wetland plant and soil data across elevation and zonation gradients within 10 …


Modulation Of The Navigational Strategy Of Insects In Controlled Temperature Environments, Joseph Shomar, Anggie Ferrer, Josh Forer, Tom Zhang, Mason Klein Jan 2018

Modulation Of The Navigational Strategy Of Insects In Controlled Temperature Environments, Joseph Shomar, Anggie Ferrer, Josh Forer, Tom Zhang, Mason Klein

2018 Entries

With its small size and limited motor tool set, the Drosophila larva is a good system to study how animals alter specific elements of their behavior to search and reach optimal environmental conditions. We aim to understand the larva’s response to temperature across development, in sensory gradients, and to distinguish behavioral modulations based on physical changes from those due to sensory input. PID-controlled instruments drive temporal or spatial temperature gradients; combined with a moat system to replenish gels at high temperature, we can explore the larva’s full behavioral profile. Many larvae are simultaneously observed during free navigation in three different …


Integrating Dynamic Subsurface Habitat Metrics Into Species Distribution Models, Stephanie Brodie, Michael G. Jacox, Steven J. Bograd, Heather Welch, Heidi Dewar, Kylie L. Scales, Sara M. Maxwell, Dana M. Briscoe, Christopher A. Edwards, Larry B. Crowder, Rebecca L. Lewison, Elliott L. Hazen Jan 2018

Integrating Dynamic Subsurface Habitat Metrics Into Species Distribution Models, Stephanie Brodie, Michael G. Jacox, Steven J. Bograd, Heather Welch, Heidi Dewar, Kylie L. Scales, Sara M. Maxwell, Dana M. Briscoe, Christopher A. Edwards, Larry B. Crowder, Rebecca L. Lewison, Elliott L. Hazen

Biological Sciences Faculty Publications

Species distribution models (SDMs) have become key tools for describing and predicting species habitats. In the marine domain, environmental data used in modeling species distributions are often remotely sensed, and as such have limited capacity for interpreting the vertical structure of the water column, or are sampled in situ, offering minimal spatial and temporal coverage. Advances in ocean models have improved our capacity to explore subsurface ocean features, yet there has been limited integration of such features in SDMs. Using output from a data-assimilative configuration of the Regional Ocean Modeling System, we examine the effect of including dynamic subsurface …


High Frequency Temperature Variability Reduces The Risk Of Coral Bleaching, Aryan Safaie, Nyssa J. Silbiger, Timothy R. Mcclanahan, Geno Pawlak, Daniel J. Barshis, James L. Hench, Gareth J. Williams, Kristen A. Davis Jan 2018

High Frequency Temperature Variability Reduces The Risk Of Coral Bleaching, Aryan Safaie, Nyssa J. Silbiger, Timothy R. Mcclanahan, Geno Pawlak, Daniel J. Barshis, James L. Hench, Gareth J. Williams, Kristen A. Davis

Biological Sciences Faculty Publications

Coral bleaching is the detrimental expulsion of algal symbionts from their cnidarian hosts, and predominantly occurs when corals are exposed to thermal stress. The incidence and severity of bleaching is often spatially heterogeneous within reef-scales (km), and is therefore not predictable using conventional remote sensing products. Here, we systematically assess the relationship between in situ measurements of 20 environmental variables, along with seven remotely sensed SST thermal stress metrics, and 81 observed bleaching events at coral reef locations spanning five major reef regions globally. We find that high-frequency temperature variability (i.e., daily temperature range) was the most influential factor in …


What Controls Variation In Carbon Use Efficiency Among Amazonian Tropical Forests?, Christopher E. Doughty, Gregory R. Goldsmith, Nicolas Raab, Cecile A. J. Girardin, Filio Farfan-Amezquita, Walter Huaraca-Huasco, Javier E. Silva-Espejo, Alejandro Araujo-Murakami, Antonio C. L. Da Costa, Wanderley Rocha, David Galbraith, Patrick Meir, Dan B. Metcalfe, Yadvinder Malhi Oct 2017

What Controls Variation In Carbon Use Efficiency Among Amazonian Tropical Forests?, Christopher E. Doughty, Gregory R. Goldsmith, Nicolas Raab, Cecile A. J. Girardin, Filio Farfan-Amezquita, Walter Huaraca-Huasco, Javier E. Silva-Espejo, Alejandro Araujo-Murakami, Antonio C. L. Da Costa, Wanderley Rocha, David Galbraith, Patrick Meir, Dan B. Metcalfe, Yadvinder Malhi

Biology, Chemistry, and Environmental Sciences Faculty Articles and Research

Why do some forests produce biomass more efficiently than others? Variations in Carbon Use Efficiency (CUE: total Net Primary Production (NPP)/ Gross Primary Production (GPP)) may be due to changes in wood residence time (Biomass/NPPwood), temperature, or soil nutrient status. We tested these hypotheses in 14, one ha plots across Amazonian and Andean forests where we measured most key components of net primary production (NPP: wood, fine roots, and leaves) and autotrophic respiration (Ra; wood, rhizosphere, and leaf respiration). We found that lower fertility sites were less efficient at producing biomass and had higher rhizosphere respiration, …


Linear And Nonlinear Effects Of Temperature And Precipitation On Ecosystem Properties In Tidal Saline Wetlands, Laura C. Feher, Michael J. Osland, Kereen T. Griffith, James B. Grace, Rebecca J. Howard, Camille L. Stagg, Nicholas M. Enwright, Ken W. Krauss, Christopher A. Gabler, Richard H. Day, Kerrylee Rogers Oct 2017

Linear And Nonlinear Effects Of Temperature And Precipitation On Ecosystem Properties In Tidal Saline Wetlands, Laura C. Feher, Michael J. Osland, Kereen T. Griffith, James B. Grace, Rebecca J. Howard, Camille L. Stagg, Nicholas M. Enwright, Ken W. Krauss, Christopher A. Gabler, Richard H. Day, Kerrylee Rogers

School of Earth, Environmental, and Marine Sciences Faculty Publications and Presentations

Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate-sensitive ecological transition zones. Here, we used climate- and literature-derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above-ground productivity …


Global Land Carbon Sink Response To Temperature And Precipitation Varies With Enso Phase, Yuanyuan Fang, Anna M. Michalak, Christopher R. Schwalm, Deborah N. Huntzinger, Joseph A. Berry, Philippe Ciais, Shilong Piao, Benjamin Poulter, Joshua B. Fisher, Robert B. Cook, Daniel Hayes, Maoyi Huang, Akihiko Ito, Atul Jain, Huimin Lei, Chaoqun Lu, Jiafu Mao, Nicholas C. Parazoo, Shushi Peng, Daniel M. Ricciuto, Xiaoying Shi, Bo Tao, Hanqin Tian, Weile Wang, Yaxing Wei, Jia Yang Jun 2017

Global Land Carbon Sink Response To Temperature And Precipitation Varies With Enso Phase, Yuanyuan Fang, Anna M. Michalak, Christopher R. Schwalm, Deborah N. Huntzinger, Joseph A. Berry, Philippe Ciais, Shilong Piao, Benjamin Poulter, Joshua B. Fisher, Robert B. Cook, Daniel Hayes, Maoyi Huang, Akihiko Ito, Atul Jain, Huimin Lei, Chaoqun Lu, Jiafu Mao, Nicholas C. Parazoo, Shushi Peng, Daniel M. Ricciuto, Xiaoying Shi, Bo Tao, Hanqin Tian, Weile Wang, Yaxing Wei, Jia Yang

Plant and Soil Sciences Faculty Publications

Climate variability associated with the El Niño-Southern Oscillation (ENSO) and its consequent impacts on land carbon sink interannual variability have been used as a basis for investigating carbon cycle responses to climate variability more broadly, and to inform the sensitivity of the tropical carbon budget to climate change. Past studies have presented opposing views about whether temperature or precipitation is the primary factor driving the response of the land carbon sink to ENSO. Here, we show that the dominant driver varies with ENSO phase. Whereas tropical temperature explains sink dynamics following El Niño conditions (r TG,P = 0.59, p …


Experimental Impacts Of Climate Warming And Ocean Carbonation On Eelgrass Zostera Marina, Richard C. Zimmerman, Victoria J. Hill, Malee Jinuntuya, Billur Celebi, David Ruble, Miranda Smith, Tiffany Cedeno, W. Mark Swingle Feb 2017

Experimental Impacts Of Climate Warming And Ocean Carbonation On Eelgrass Zostera Marina, Richard C. Zimmerman, Victoria J. Hill, Malee Jinuntuya, Billur Celebi, David Ruble, Miranda Smith, Tiffany Cedeno, W. Mark Swingle

OES Faculty Publications

CO2 is a critical and potentially limiting substrate for photosynthesis of both terrestrial and aquatic ecosystems. In addition to being a climate-warming greenhouse gas, increasing concentrations of CO2 will dissolve in the oceans, eliciting both negative and positive responses among organisms in a process commonly known as ocean acidification. The dissolution of CO2 into ocean surface waters, however, also increases its availability for photosynthesis, to which the highly successful, and ecologically important, seagrasses respond positively. Thus, the process might be more accurately characterized as ocean carbonation. This experiment demonstrated that CO2 stimulation of primary production enhances …


Linear And Nonlinear Effects Of Temperature And Precipitation On Ecosystem Properties In Tidal Saline Wetlands, Laura C. Feher, Michael J. Osland, Kereen T. Griffith, James B. Grace, Rebecca J. Howard, Camille L. Stagg, Nicholas M. Enwright, Ken W. Krauss, Christopher A. Gabler, Richard H. Day, Kerrylee Rogers Jan 2017

Linear And Nonlinear Effects Of Temperature And Precipitation On Ecosystem Properties In Tidal Saline Wetlands, Laura C. Feher, Michael J. Osland, Kereen T. Griffith, James B. Grace, Rebecca J. Howard, Camille L. Stagg, Nicholas M. Enwright, Ken W. Krauss, Christopher A. Gabler, Richard H. Day, Kerrylee Rogers

School of Earth, Environmental, and Marine Sciences Faculty Publications and Presentations

Climate greatly influences the structure and functioning of tidal saline wetland ecosystems. However, there is a need to better quantify the effects of climatic drivers on ecosystem properties, particularly near climate‐sensitive ecological transition zones. Here, we used climate‐ and literature‐derived ecological data from tidal saline wetlands to test hypotheses regarding the influence of climatic drivers (i.e., temperature and precipitation regimes) on the following six ecosystem properties: canopy height, biomass, productivity, decomposition, soil carbon density, and soil carbon accumulation. Our analyses quantify and elucidate linear and nonlinear effects of climatic drivers. We quantified positive linear relationships between temperature and above‐ground productivity …


Twenty-First Century Climate Change And Submerged Aquatic Vegetation In A Temperate Estuary: The Case Of Chesapeake Bay, Thomas M. Arnold, Richard C. Zimmerman, Katharina A.M. Engelhardt, J. Court Stevenson Jan 2017

Twenty-First Century Climate Change And Submerged Aquatic Vegetation In A Temperate Estuary: The Case Of Chesapeake Bay, Thomas M. Arnold, Richard C. Zimmerman, Katharina A.M. Engelhardt, J. Court Stevenson

OES Faculty Publications

Introduction: The Chesapeake Bay was once renowned for expansive meadows of submerged aquatic vegetation (SAV). However, only 10% of the original meadows survive. Future restoration effortswill be complicated by accelerating climate change, including physiological stressors such as a predicted mean temperature increase of 2-6°C and a 50-160% increase in CO2 concentrations.

Outcomes: As the Chesapeake Bay begins to exhibit characteristics of a subtropical estuary, summer heat waves will become more frequent and severe. Warming alone would eventually eliminate eelgrass (Zostera marina) from the region. It will favor native heat-tolerant species such as widgeon grass (Ruppia maritima) while facilitating colonization by …


Low Florida Coral Calcification Rates In The Plio-Pleistocene, Thomas C. Brachert, Markus Reuter, Stefan Kruger, James S. Klaus, Kevin P. Helmle, Janice M. Lough Aug 2016

Low Florida Coral Calcification Rates In The Plio-Pleistocene, Thomas C. Brachert, Markus Reuter, Stefan Kruger, James S. Klaus, Kevin P. Helmle, Janice M. Lough

Marine & Environmental Sciences Faculty Articles

In geological outcrops and drill cores from reef frameworks, the skeletons of scleractinian corals are usually leached and more or less completely transformed into sparry calcite because the highly porous skeletons formed of metastable aragonite (CaCO3) undergo rapid diagenetic alteration. Upon alteration, ghost structures of the distinct annual growth bands often allow for reconstructions of annual extension ( =  growth) rates, but information on skeletal density needed for reconstructions of calcification rates is invariably lost. This report presents the bulk density, extension rates and calcification rates of fossil reef corals which underwent minor diagenetic alteration only. The corals derive from …


Citizen Science Sensor Development - Smap | Soil Moisture Active Passive, Hagop Hovhannesian Aug 2016

Citizen Science Sensor Development - Smap | Soil Moisture Active Passive, Hagop Hovhannesian

STAR Program Research Presentations

“Detailed monitoring of soil moisture provides a view of how our whole Earth system works.”

The Soil Moisture Active Passive (SMAP) satellite mission was launched in January 2015; its main purpose is to acquire global measurements of soil moisture. SMAP partnered with the GLOBE program (Global Learning and Observations to Benefit the Environment), which is an international program where students collect environmental variables in a scientifically methodical way. SMAP readings and maps have various uses in various fields, which include monitoring drought, predicting floods, assisting in crop productivity, and linking water, energy and carbon cycles. The goal of this project …


Effects Of Temperature, Irradiance And Pco2 On The Growth And Nitrogen Utilization Of Prorocentrum Donghaiense, Zhangxi Hu, Margaret R. Mulholland, Ning Xu, Shunshan Duan Jan 2016

Effects Of Temperature, Irradiance And Pco2 On The Growth And Nitrogen Utilization Of Prorocentrum Donghaiense, Zhangxi Hu, Margaret R. Mulholland, Ning Xu, Shunshan Duan

OES Faculty Publications

Environmental factors such as temp erature, irradiance, and nitrogen (N) supply affect the growth of Prorocentrum donghaiense, but the interactive effects of these physical factors and the effects of atmospheric CO2 (pCO2) on growth and N uptake have not been examined. We compared growth kinetics of P. donghaiense grown on 4 different N substrates (nitrate [NO3 -], ammonium [NH4 +], urea, and glutamic acid [glu]) with respect to temperature, irradiance, and pCO2. Temperature (15 to 30°C) had a positive effect on growth (max. growth rates: 0.17 to 0.65 d …


Regional Variations Of Optimal Sowing Dates Of Maize For The Southwestern U.S., Boksoon Myoung, Seung Hee Kim, Jinwon Kim, Menas Kafatos Jan 2016

Regional Variations Of Optimal Sowing Dates Of Maize For The Southwestern U.S., Boksoon Myoung, Seung Hee Kim, Jinwon Kim, Menas Kafatos

Mathematics, Physics, and Computer Science Faculty Articles and Research

Sowing date (SD) is sensitive to regional climate characteristics; thus, it is critical to systematically examine the effects of SD on crop yields for various temperature regimes. We performed a sensitivity study of SD for maize in the southwestern U.S. using the regionally extended version of the Agricultural Production Systems sIMulator (APSIM) model. The model was run utilizing North American Regional Reanalysis at a 32 km resolution from 1991 to 2011, with an irrigation threshold at 95% of the soil water-holding capacity. Two types of SD optimizations maximizing yield potential (Yp), varying spatially or interannually, revealed that the optimal SD …


How Climate Change Has Affected The Spatio-Temporal Patterns Of Precipitation And Temperature At Various Time Scales In North Korea, Won-Ho Nam, Eun-Mi Hong, Guillermo A. Baigorria Jan 2015

How Climate Change Has Affected The Spatio-Temporal Patterns Of Precipitation And Temperature At Various Time Scales In North Korea, Won-Ho Nam, Eun-Mi Hong, Guillermo A. Baigorria

School of Natural Resources: Faculty Publications

Detecting changes in the spatio-temporal patterns of temperature and precipitation is a prerequisite for developing effective adaptation options and strategies for the future. An effective method for assessing climate change and for providing information to decision makers and stakeholders is needed to implement appropriate adaptation strategies. The objective of this study was to determine whether climate change has caused spatio-temporal changes in meteorological elements in North Korea. We delineated the spatio-temporal patterns of temperature and precipitation caused by climate change in specific time periods based on statistically significant differences using a statistically robust method. Historical weather data from 27 meteorological …


El Nino Southern Oscillation (Enso) Enhances Co2 Exchange Rates In Freshwater Marsh Ecosystems In The Florida Everglades, Sparkle L. Malone, Christina L. Staudhammer, Steven F. Oberbauer, Paulo Olivas, Michael G. Ryan, Jessica L. Schedlbauer, Henry W. Loescher, Gregory Starr Dec 2014

El Nino Southern Oscillation (Enso) Enhances Co2 Exchange Rates In Freshwater Marsh Ecosystems In The Florida Everglades, Sparkle L. Malone, Christina L. Staudhammer, Steven F. Oberbauer, Paulo Olivas, Michael G. Ryan, Jessica L. Schedlbauer, Henry W. Loescher, Gregory Starr

Biology Faculty Publications

No abstract provided.


The Non-Lethal Effects Of Climate Change On The Territoriality Of Lottia Gigantea, Tracey Gunanto, Christina Chavez, Jessica Martinez, William G. Wright Dec 2014

The Non-Lethal Effects Of Climate Change On The Territoriality Of Lottia Gigantea, Tracey Gunanto, Christina Chavez, Jessica Martinez, William G. Wright

Student Scholar Symposium Abstracts and Posters

The intertidal zone has been described as ground zero for global warming. Here, the owl limpet, Lottia gigantea, adapted to the cool ocean temperatures, must withstand a few hours of baking sun during day-time low tides. This hardship is predicted to increase in frequency and severity in the future as the globe warms. Our research hypothesized that heat events compromise territorial behavior of L. gigantea. All observations and experiments were performed at Inspiration Point near Newport Beach, California. We measured the natural radiant temperature of tagged limpets during day-time low tides using a field-calibrated infrared “thermogun”. We also …


The Effect Of Weather During Rearing On Morphometric Traits Of Juvenile Cliff Swallows, Erin A. Roche, Mary Bomberger Brown, Charles R. Brown Dec 2014

The Effect Of Weather During Rearing On Morphometric Traits Of Juvenile Cliff Swallows, Erin A. Roche, Mary Bomberger Brown, Charles R. Brown

School of Natural Resources: Faculty Publications

Episodes of food deprivation may change how nestling birds allocate energy to the growth of skeletal and feather morphological traits during development. Cliff swallows (Petrochelidon pyrrhonota) are colonial, insectivorous birds that regu­larly experience brief periods of severe weather–induced food deprivation during the nesting season which may affect offspring development. We investigated how annual variation in timing of rearing and weather were associated with length of wing and tail, skeletal traits, and body mass in juvenile cliff swallows reared in southwestern Nebraska during 2001–2006. As predicted under conditions of food deprivation, nestling skeletal and feather measurements were generally smaller …


Salinity And Temperature Distribution Of Jellyfish In The San Francisco Estuary, Trisha Huynh, Brooke Bemowski, Lindsay Sullivan, Wim Kimmerer Aug 2014

Salinity And Temperature Distribution Of Jellyfish In The San Francisco Estuary, Trisha Huynh, Brooke Bemowski, Lindsay Sullivan, Wim Kimmerer

STAR Program Research Presentations

Jellyfish are generally characterized by their jelly-like bodies and internal lining (two tissue layers). They found both in the phylum Ctenophora and the phylum Cnidaria. Ctenophores differ from cnidarians primarily due to the rows of “combs”, or cilia, which are used for transportation. Additionally, ctenophores possess sticky cells while cindarians possess stinging cells. Jellyfish depend on zooplankton (small floating aquatic animals) as a food source; as a result, they are potential competitors and predators to plankton-eating fish and may negatively impact fish populations.

As recently as 1950, jellyfish have entered the San Francisco Bay from the Mediterranean Sea (probably …


Nursing Females Are More Prone To Heat Stress: Demography Matters When Managing Flying-Foxes For Climate Change, Stephanie T. Snoyman, Jasmina Munich, Culum Brown Dec 2012

Nursing Females Are More Prone To Heat Stress: Demography Matters When Managing Flying-Foxes For Climate Change, Stephanie T. Snoyman, Jasmina Munich, Culum Brown

Ecological Impacts of Climate Change Collection

Determining the underlying mechanisms responsible for species-specific responses to climate change is important from a species management perspective. The grey-headed flying-fox, Pteropus poliocephalus, is listed as vulnerable but it also a significant pest species for orchardists and thereby presents an interesting management conundrum. Over the last century, the abundance of the grey-headed flying-fox, P. poliocephalus, in Australia has decreased due to a variety of threatening processes but has increased in abundance in urban areas. These flying-foxes are highly susceptible to extreme heat events which are predicted to increase in the future under climate change scenarios. Exceptionally hot days result in …