Open Access. Powered by Scholars. Published by Universities.®

Physical Sciences and Mathematics Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Physical Sciences and Mathematics

Dnmt1 Stability Is Regulated By Proteins Coordinating Deubiquitination And Acetylation-Driven Ubiquitination, Zhanwen Du, Jing Song, Yong Wang, Yiqing Zhao, Kishore Guda, Shuming Yang, Hung Ying Kao, Yan Xu, Joseph Willis, Sanford D. Markowitz, David Sedwick, Robert M. Ewing, Zhenghe Wang Nov 2010

Dnmt1 Stability Is Regulated By Proteins Coordinating Deubiquitination And Acetylation-Driven Ubiquitination, Zhanwen Du, Jing Song, Yong Wang, Yiqing Zhao, Kishore Guda, Shuming Yang, Hung Ying Kao, Yan Xu, Joseph Willis, Sanford D. Markowitz, David Sedwick, Robert M. Ewing, Zhenghe Wang

Chemistry Faculty Publications

DNA methyltransferase 1 (DNMT1) is the primary enzyme that maintains DNA methylation. We describe a previously unknown mode of regulation of DNMT1 protein stability through the coordinated action of an array of DNMT1-associated proteins. DNMT1 was destabilized by acetylation by the acetyltransferase Tip60, which triggered ubiquitination by the E3 ligase UHRF1, thereby targeting DNMT1 for proteasomal degradation. In contrast, DNMT1 was stabilized by histone deacetylase 1 (HDAC1) and the deubiquitinase HAUSP (herpes virus–associated ubiquitin-specific protease). Analysis of the abundance of DNMT1 and Tip60, as well as the association between HAUSP and DNMT1, suggested that during the cell cycle the initiation …


Dna Polymerases: Perfect Enzymes For An Imperfect World, Anthony J. Berdis May 2010

Dna Polymerases: Perfect Enzymes For An Imperfect World, Anthony J. Berdis

Chemistry Faculty Publications

This Special Thematic Issue explores the molecular properties of DNA polymerases as extraordinary biological catalysts. In this short introductory chapter, I briefly highlight some of the most important concepts from the articles contained within this Special Issue. The contents of this Special Issue are arranged into distinct sub-categories corresponding to mechanistic studies of faithful DNA polymerization, studies of "specialized" DNA polymerases that function on damaged DNA, and DNA polymerases that are of therapeutic importance against various diseases. Emphasis is placed on understanding the dynamic cellular roles and biochemical functions of DNA polymerases, and how their structure and mechanism impact their …


Non-Natural Nucleotides As Probes For The Mechanism And Fidelity Of Dna Polymerases, Irene Lee, Anthony J. Berdis May 2010

Non-Natural Nucleotides As Probes For The Mechanism And Fidelity Of Dna Polymerases, Irene Lee, Anthony J. Berdis

Chemistry Faculty Publications

DNA is a remarkable macromolecule that functions primarily as the carrier of the genetic information of organisms ranging from viruses to bacteria to eukaryotes. The ability of DNA polymerases to efficiently and accurately replicate genetic material represents one of the most fundamental yet complex biological processes found in nature. The central dogma of DNA polymerization is that the efficiency and fidelity of this biological process is dependent upon proper hydrogen-bonding interactions between an incoming nucleotide and its templating partner. However, the foundation of this dogma has been recently challenged by the demonstration that DNA polymerases can effectively and, in some …


Terminal Deoxynucleotidyl Transferase: The Story Of A Misguided Dna Polymerase, Edward A. Motea, Anthony J. Berdis May 2010

Terminal Deoxynucleotidyl Transferase: The Story Of A Misguided Dna Polymerase, Edward A. Motea, Anthony J. Berdis

Chemistry Faculty Publications

Nearly every DNA polymerase characterized to date exclusively catalyzes the incorporation of mononucleotides into a growing primer using a DNA or RNA template as a guide to direct each incorporation event. There is, however, one unique DNA polymerase designated terminal deoxynucleotidyl transferase that performs DNA synthesis using only single-stranded DNA as the nucleic acid substrate. In this chapter, we review the biological role of this enigmatic DNA polymerase and the biochemical mechanism for its ability to perform DNA synthesis in the absence of a templating strand. We compare and contrast the molecular events for template-independent DNA synthesis catalyzed by terminal …


Amino Acid Transport In Thermophiles: Characterization Of An Arginine-Binding Protein In Thermotoga Maritima, Matthew S. Luchansky, Bryan S. Der, Sabato D'Auria, Gabriella Pocsfalvi, Luisa Iozzion, Daniela Marasco, Jonathan D. Dattelbaum Jan 2010

Amino Acid Transport In Thermophiles: Characterization Of An Arginine-Binding Protein In Thermotoga Maritima, Matthew S. Luchansky, Bryan S. Der, Sabato D'Auria, Gabriella Pocsfalvi, Luisa Iozzion, Daniela Marasco, Jonathan D. Dattelbaum

Chemistry Faculty Publications

Members of the periplasmic binding protein superfamily are involved in the selective passage of ligands through bacterial cell membranes. The hyperthermophilic eubacterium Thermotoga maritima was found to encode a highly stable and specific periplasmic arginine-binding protein (TM0593). Following signal sequence removal and overexpression in Escherichia coli, TM0593 was purified by thermoprecipitation and affinity chromatography. The ultra-stable protein with a monomeric molecular weight of 27.7 kDa was found to exist as both a homodimer and homotrimer at appreciable concentrations even under strongly denaturing conditions, with an estimated transition temperature of 116 °C. Its multimeric structure may provide further evidence of …


Amino Acid Transport In Thermophiles: Characterization Of An Arginine-Binding Protein In Thermotoga Maritima. 2. Molecular Organization And Structural Stability, Andrea Scirè, Anna Marabotti, Maria Staiano, Luisa Iozzion, Matthew S. Luchansky, Bryan S. Der, Jonathan D. Dattelbaum, Fabio Tanfani, Sabato D'Auria Jan 2010

Amino Acid Transport In Thermophiles: Characterization Of An Arginine-Binding Protein In Thermotoga Maritima. 2. Molecular Organization And Structural Stability, Andrea Scirè, Anna Marabotti, Maria Staiano, Luisa Iozzion, Matthew S. Luchansky, Bryan S. Der, Jonathan D. Dattelbaum, Fabio Tanfani, Sabato D'Auria

Chemistry Faculty Publications

ABC transport systems provide selective passage of metabolites across cell membranes and typically require the presence of a soluble binding protein with high specificity to a specific ligand. In addition to their primary role in nutrient gathering, the binding proteins associated with bacterial transport systems have been studied for their potential to serve as design scaffolds for the development of fluorescent protein biosensors. In this work, we used Fourier transform infrared spectroscopy and molecular dynamics simulations to investigate the physicochemical properties of a hyperthermophilic binding protein from Thermotoga maritima. We demonstrated preferential binding for the polar amino acid arginine …